

STONY BROOK CANCER CENTER

Perspectives in Occupational Cancer

Paolo Boffetta MD, MPH

October 6th 2022

- Occupation remains an important cause of cancer, especially in men
- It is likely that occupational causes of cancer are yet to be identified
- Once causal associations are identified, control measures are feasible
- The discovery of occupational carcinogens of disease has implications for the general environment
- It provides information relevant to the understanding of disease mechanisms
- It has greatly contributed to methodological research

RESEARCH

OCCUPATIONAL EPIDEMIOLOGY RESEARCH

- Surveillance of exposed workers
- Etiological research
- Special exposure circumstances

OCCUPATIONAL EPIDEMIOLOGY RESEARCH

- Surveillance of exposed workers
- Etiological research
- Contribution to mechanistic studies

- Burden of occupational cancer
- Shape of the risk function after cessation of exposure
- Risk in workers hired after technological changes
- Risk outside 'traditional' industries

SURVEILLANCE OF **EXPOSED WORKERS**

NUMBER OF CANCER DEATHS ATTRIBUTABLE TO **OCCUPATIONAL EXPOSURES – FRENCH MEN,** 2000

- IARC Group 1 agents
- Estimates of exposure prevalence from nationwide survey
- Relative risks from meta-analyses of large studies

Agent	Cancer	P(exp)%	RR	AF%	N death	S
Silica	Lung cancer	2.35	1.20	0.5	96	
Radon	Lung cancer	-	-	0.1	23	
Wood dust	Sinonasal cancer	-	-	19.2	19	
Leather dust	Sinonasal cancer	2.70	1.92	2.4	2	
Benzene	Leukemia	1.68	3.30	3.7	100	
Asbestos	Lung cancer	9.10	1.48	5.4	1116	
	Mesothelioma	-	-	83.2	504	
Chromium(VI)	Sinonasal cancer	1.16	5.18	4.6	5	
	Lung cancer	1.16	3.10	2.4	489	
Cadmium	Lung cancer	0.22	1.17	0.04	8	Boffetta

NUMBER OF CANCER DEATHS ATTRIBUTABLE TO OCCUPATIONAL EXPOSURES – FRENCH MEN, 2000

Agent	Cancer	P(exp)%	RR	AF%	N deaths
PAH	Larynx cancer	8.36	1.38	3.1	53
	Lung cancer	8.36	1.37	3.0	619
	Bladder cancer	8.36	1.40	3.2	104
Untreated mineral oils	Skin SCC	5.00	1.46	2.2	5
Aromatic amines	Bladder cancer	0.61	1.60	0.4	12
Butadiene	Leukemia	0.25	1.16	0.04	1
SHS (never smokers)	Lung cancer	56.7	1.12	6.4	54
Painters	Lung cancer	2.00	1.29	0.6	119
	Bladder cancer	2.00	1.23	0.5	15
Rubber industry	Bladder cancer	1.10	2.40	1.5	49
	Leukemia	1.10	1.30	0.3	9
Total				4.0	3440

BURDEN OF OCCUPATIONAL CANCER

FRACTION OF CANCERS ATTRIBUTABLE TO OCCUPATIONAL EXPOSURES IN MEN

Reference	Population	Method	I/M	All ca AF
Doll & Peto, 1981	USA	Review	Μ	7%
Dreyer et al., 1997	Nordic c.	RR, exp	I	3%
Boffetta et al., 2010	France	RR, exp	Μ	4%
Parkin et al., 2011	UK	RR, exp	I.	5%
GBD, 2020	Global	RR, exp	Μ	4%

Lung ca AF 15%

13%

10%

20%

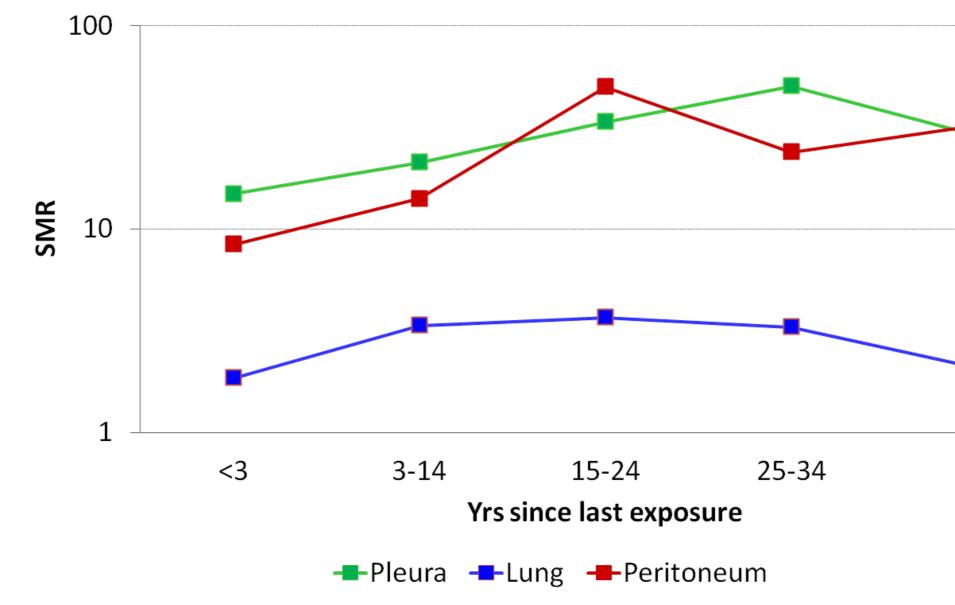
18%

BURDEN OF OCCUPATIONAL CANCER

- Targeting interventions
- Identifying gaps in knowledge and priorities for future research
- Methodological issues
 - Interactions
 - Evolving exposure circumstances

- Burden of occupational cancer •
- Risk after cessation of exposure •
- Risk in workers hired after technological changes
- Risk outside 'traditional' industries

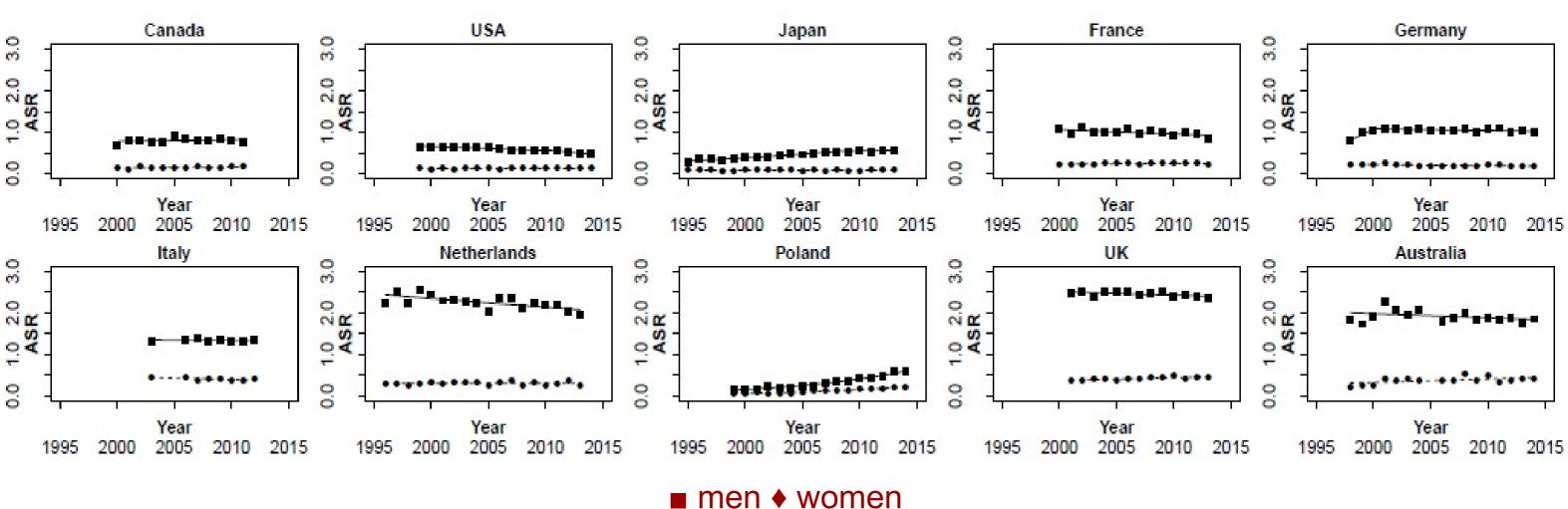
SURVEILLANCE OF **EXPOSED WORKERS**



STUDYING THE EFFECT OF CESSATION OF EXPOSURE

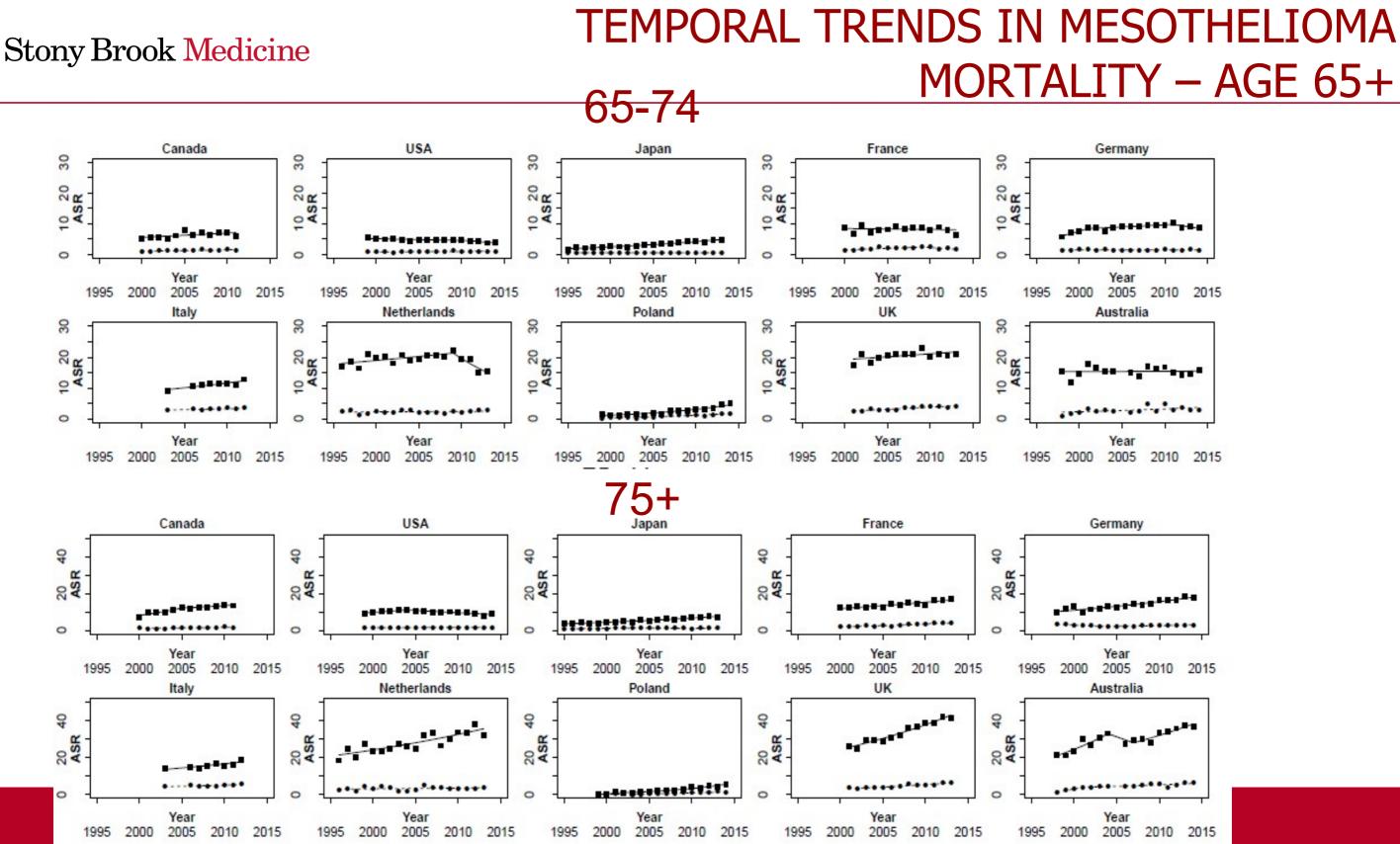
- Need for long-term follow-up
- Assumption of no temporal changes in other determinants of the disease

MORTALITY IN ASBESTOS TEXTILE WORKERS BY YEARS SINCE LAST EXPOSURE



35+

Pira et al., 2016



TEMPORAL TRENDS IN MESOTHELIOMA MORTALITY IN SELECTED COUNTRIES

All Ages

Boffetta et al., 2018

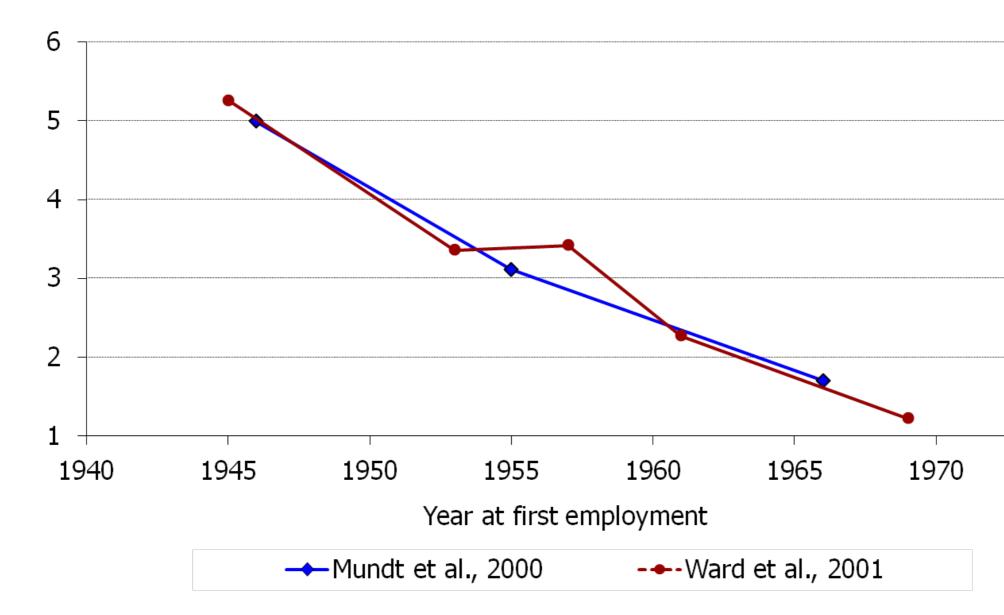
MORTALITY - AGE 65+

STUDYING THE EFFECT OF CESSATION OF EXPOSURE

- Detailed information on risk functions
- Implications for surveillance and compensation
- Information on disease mechanisms

- Burden of occupational cancer •
- Risk function after cessation of exposure
- Risk in workers hired after technological changes
- Risk outside 'traditional' industries

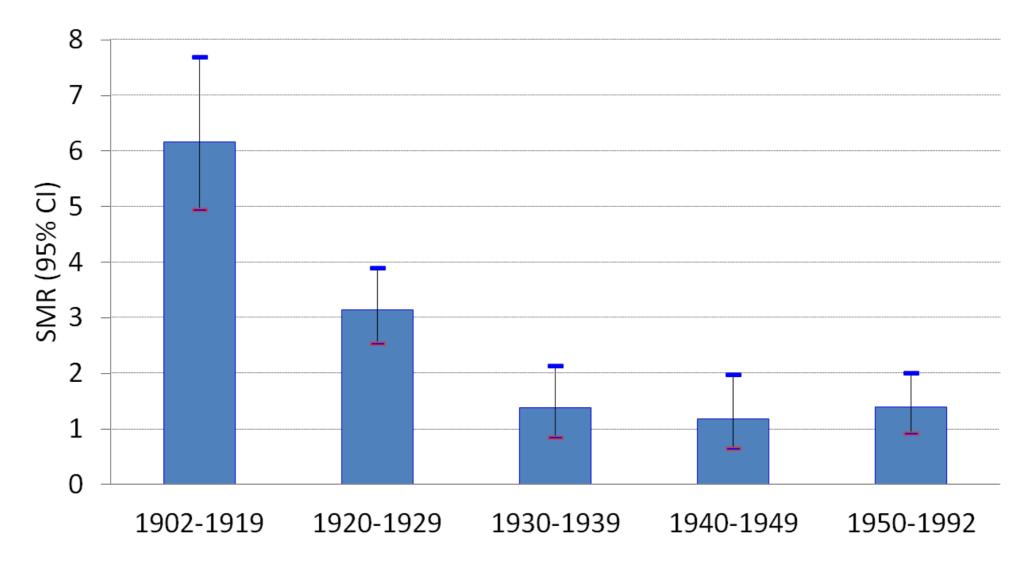
SURVEILLANCE OF **EXPOSED WORKERS**



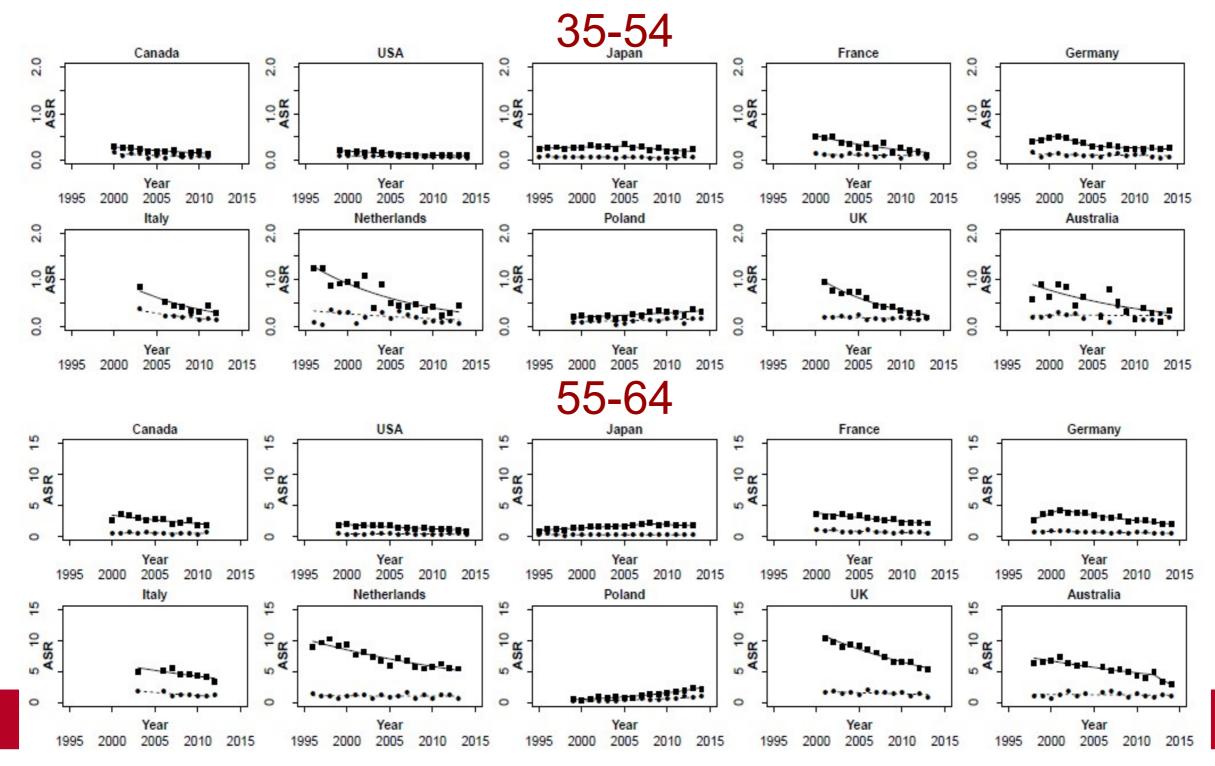
STUDYING THE EFFECT OF CHANGES IN EXPOSURE CIRCUMSTANCES

- Evidence of risk reduction from many industries
- Evidence at ecological level

SMR OF LIVER CANCER IN TWO COHORTS OF VINYL CHLORIDE WORKERS



Boffetta et al., 2003


SMR OF LUNG CANCER IN WELSH NICKEL WORKERS BY YEAR OF FIRST EMPLOYMENT

Grimsrud & Peto, 2006

TEMPORAL TRENDS IN MESOTHELIOMA MORTALITY – AGE <65

STUDYING THE EFFECT OF CHANGES IN EXPOSURE CIRCUMSTANCES

- Effectiveness of preventive measures
- Information on disease mechanisms •

- Burden of occupational cancer •
- Risk function after cessation of exposure
- Risk in workers hired after technological changes
- Risk outside 'traditional' industries

SURVEILLANCE OF **EXPOSED WORKERS**

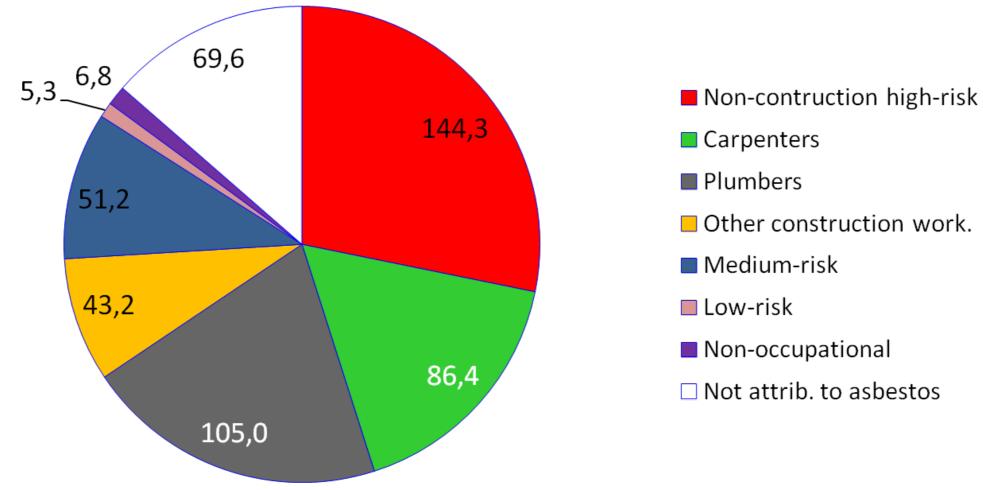
RISK OF MESOTHELIOMA IN DIFFERENT OCCUPATIONAL GROUPS

Occupational category	Cases	Controls	OR (9
Non-construction high risk			20.000
Any non-construction high-risk job	102	78	16.8 (9
Construction			
Carpenter	93	36	36.0 (1
Plumber, electrician, painter or decorator	115	96	14.6 (8
Other construction	81	120	7.9 (4
Medium-risk industrial			
Any medium-risk industrial job	157	331	5.2 (3
Low-risk industrial			
Any low-risk industrial job	153	406	4.1 (2
Reference group ^a	25	278	1.0 (n

95% Cls)

9.6, 29.3)

(19.2, 67.3) (8.8, 24.4) (4.7, 13.3)


(3.3, 8.2)

(2.6, 6.4) (ref)

Rake et al., 2009

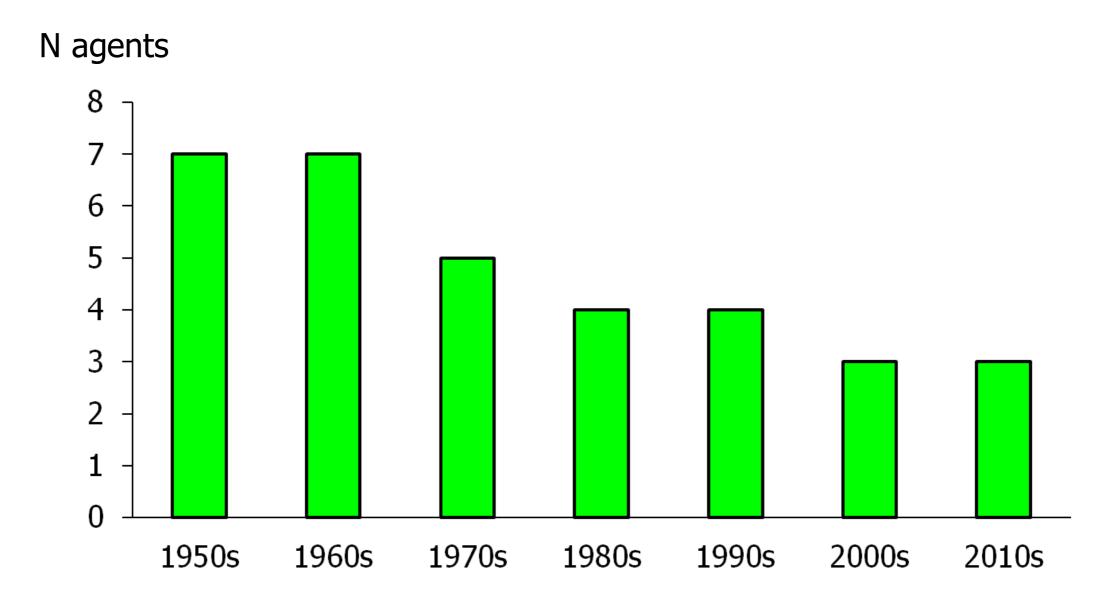
NUMBER OF CASES ATTRIBUTABLE TO DIFFERENT SOURCES OF ASBESTOS EXPOSURE

Rake et al., 2009

OCCUPATIONAL EPIDEMIOLOGY

- Surveillance of exposed workers
- Etiological research
- Information on disease mechanisms

DEMIOLOGY RESEARCH



ETIOLOGICAL RESEARCH

- Identification of causal associations
- Interactions
- Indirect effects of occupation on disease risk
- Special exposure circumstances

GROUP 1 EVALUATION (N=32)

EVOLUTION OF CLASSIFICATION OF IARC GROUP 1 CARCINOGENS (N=32)

	In earlier years			
Rating	IARC 1987	IARC 1979	WHO 1964	
1	19	16	13	
2A	5	3	3	
2B	1	2	N/A	
3	1	1	N/A	
Unrated	6	10	16	

(1) WHO. Prevention of cancer. Report of an Expert Panel. No 276, Geneva, 1964.

54(1)

'HISTORICAL' AND 'NEW' OCCUPATIONAL CARCINOGENS

Historical carcinogens

New carcinogens

Potency	High	Low
Exposure levels	High	Low
Co-exposures	Few	Many
Target tumour	Rare	Common

Agent	Target organ	R
Sunlight	Skin	4
Tobacco chewing	Oral cavity	4
Tobacco smoking	Lung	1
Alcohol drinking	Oral cavity	ł
Aromatic amines	Bladder	
Asbestos	Lung	

CARCINOGENS INCLUDED IN FIRST WHO LIST

- RR 4 4 15 5 8
- 5

WHO, 1964

EXAMPLES OF 'NEW' CARCINOGENS

Agent	Target organ	Year	
Tobacco smoking	Liver	2004	I
Involuntary smk	Lung	2004	1
Formaldehyde	NPC	2007	,
Alcohol drinking	Breast	2007	~
1,3 Butadiene	Lymphohem.	2008	1

RR 1.6 1.25 1.3 ~1.2 1.15

- Suspected toxic reproductive effects •
- Exposure to experimental carcinogens
 - o indium phosphide, gallium arsenide
- Rapidly evolving technology
- Unstable workforce
- Migration of industry to low- and medium-resource countries

THE EXAMPLE OF THE SEMI-CONDUCTOR INDUSTRY

ETIOLOGICAL RESEARCH

- Identification of new causal association
 - o new target organs
- Interactions
- Indirect effects of occupation on disease risk
- Special exposure circumstances

- Risk from exposure A depends on presence of exposure B (and vice-versa)
- Risk from joint exposure to A and B (or any two factors) differs from what would be expected based on the separate effects
 - Requires knowing what we should expect for joint effects

INTERACTIONS

***** Stony Brook Medicine

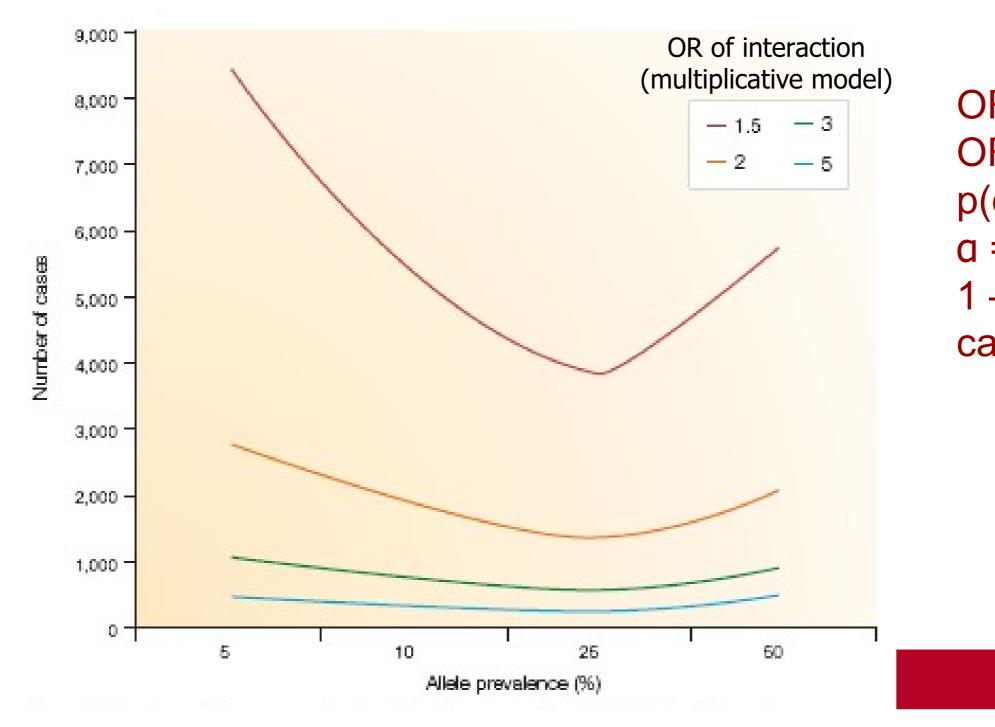
INTERACTION BETWEEN NAT2 POLYMORPHISM AND EXPOSURE TO AROMATIC AMINES

	Unexposed	Exposed	Marg
NAT2 rapid	1.0 (Ref.)	2.19 (1.35, 3.56)	
NAT2 slow	1.24 (0.90, 1.71)	3.20 (2.12, 4.82)	
Marginal effect	1,24	1.46	

ginal effect

2.19

2.58


Vineis et al., 2001

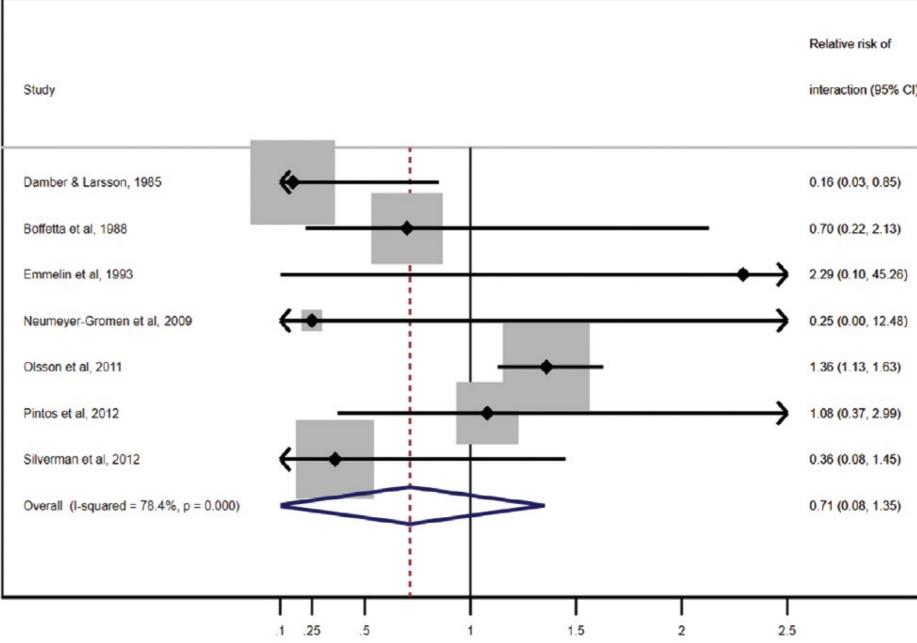
STUDYING INTERACTIONS

- Rationale for studying interactions
 - Stronger effects
 - Subgroups at higher risk
 - Information on mechanisms of disease
- Models of interaction
 - Additive model: $RR_{AB} \neq (RR_A 1) + (RR_B 1) + 1$
 - Multiplicative model: $RR_{AB} \neq RR_A \times RR_B$
 - Lack of power to discriminate between models

SAMPLE SIZE REQUIREMENT FOR

GXE INTERACTIONS

 $OR_{G} = 1.5$ OR_{eE} = 1.5 p(exp) = 0.1a = 0.05 $1 - \beta = 0.8$ ca/co ratio = 1


INTERACTION BETWEEN NAT2 POLYMORPHISM AND EXPOSURE TO AROMATIC AMINES

	Unexposed	Expose
NAT2 rapid	1.0	2.19
NAT2 slow	1.24	3.20
Additive model: Multiplicative model:	(2.19 – 1) + (1.24 – 1) 2.19 x 1.24 = 2.72	+ 1 = 2.43

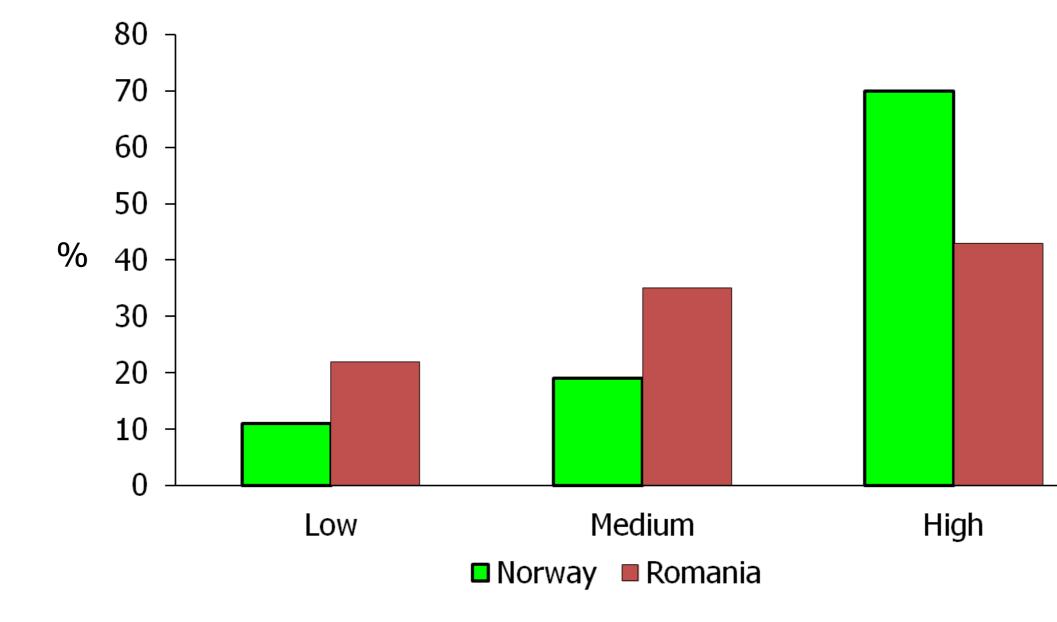
INTERACTION BETWEEN DIESEL EXHAUST AND TOBACCO SMOKING IN LUNG CANCER

	%
1)	Weight
	23.93
	16.64
	0.08
	1.00
	25.52
	12.51
	20.32
	100.00
	100.00

ETIOLOGICAL RESEARCH

- Identification of new causal association
 - o new target organs
- Interactions
- Indirect effects of occupation on disease risk
- Special exposure circumstances

INDIRECT EFFECTS OF OCCUPATION ON DISEASE RISK


- \circ delayed age at first pregancy, reduced duration of breastfeeding → breast cancer
- \circ reduced physical activity \rightarrow colon cancer
- Poorly studied relationships

Stony Brook Medicine

- Impact possibly larger than traditional carcinogens
- tyle ation ration of er r

% OF LIVE BIRTHS IN MOTHERS 35+ YRS BY EDUCATION LEVEL, 2017

ETIOLOGICAL RESEARCH

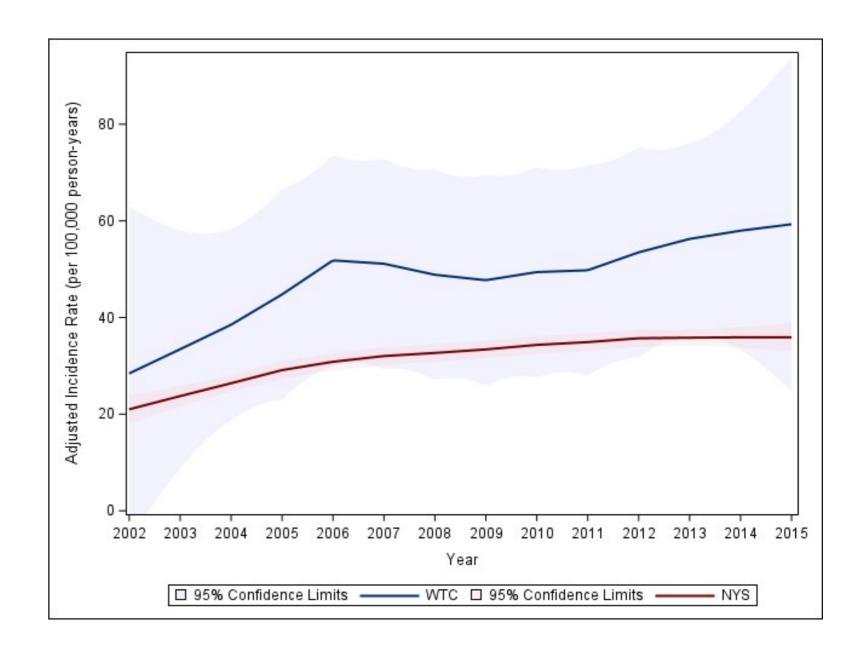
- Identification of new causal association
 - o new target organs
- Interactions
- Indirect effects of occupation on disease risk
- Special exposure circumstances

OCCUPATIONAL CANCER IN LOW- AND MEDIUM INCOME COUNTRIES

- Exposure circumstances
 - $\circ~$ Lack of data for most industries and countries
 - Obsolete technology
 - Lack of workers' training
 - Informal sector
- Limited evidence from analytical studies
 - o short latency
 - o poor exposure characterization
- Susceptibility
 - childhood exposure
 - o infections

PREVALENCE OF EXPOSURE TO OCCUPATIONAL CARCINOGENS IN BRAZIL

	Norte			Nordeste			Sudeste		
	Total	Masc	Fem	Total	Masc	Fem	Total	Masc	Fem
Asbesto	1,36	1,50	1,22	2,08	2,33	1,84	4,41	4,95	3,89
Benzeno	3,09	3,40	2,78	4,44	4,98	3,92	9,93	11,15	8,76
Benzopireno	0,91	1,00	0,82	0,36	0,40	0,32	0,13	0,15	0,11
Borracha	0,10	0,11	0,09	0,12	0,13	0,11	0,24	0,27	0,21
Diesel	2,56	2,82	2,30	2,45	2,75	2,16	1,14	1,28	1,01
Formaldeído	1,11	1,22	1,00	1,94	2,18	1,71	4,34	4,87	3,83
Fundição de aço e ferro	1,14	1,25	1,03	2,23	2,50	1,97	3,79	4,25	3,34
Níquel	0,96	1,06	0,86	0,40	0,45	0,35	0,16	0,18	0,14
Pintor	0,88	0,97	0,79	1,44	1,62	1,27	3,91	4,39	3,45
Poeira de couro	0,71	0,78	0,64	1,13	1,27	1,00	1,97	2,21	1,74
Poeira de madeira	3,81	4,19	3,43	4,19	4,70	3,70	1,70	1,91	1,50
Radiação Gama	0,04	0,04	0,04	0,04	0,04	0,04	0,15	0,17	0,13
Radiação Solar	3,87	4,26	3,48	5,35	6,01	4,72	1,74	1,95	1,54
Radônio	1,06	1,17	0,95	1,44	1,62	1,27	3,02	3,39	2,66
Sílica	1,57	1,73	1,41	2,11	2,37	1,86	5,83	6,54	5,14
Legenda: Masc – Masculino: Fem	– Femini	no			•				


Legenda: Masc – Masculino; Fem – Feminino

Azevedo e Silva et al., 2014

INCIDENCE OF MELANOMA AMONG WORLD TRADE CENTER RESPONDERS

- 58,000 WTC rescue and recovery workers
- Firefighters, police
 officers, EMS workers,
 construction workers
- On-going follow-up
- \circ Comparisons
 - NYS population
 - Other occupational cohorts
 - Internal analyses

Boffetta et al., 2021

MORTALITY AMONG WTC RESPONDERS **DIAGNOSED WITH CANCER, 2005-2015**

- 2037 cases among WTC responders enrolled in medical monitoring and treatment program
- 564 cases among WTC responders not enrolled in the program Ο
- Comparison with 11 Southern NYS counties Ο

All-cause mortality	HR (95% CI)			
WTC-MMTP vs. NYS-non-responders	0.64 (0.58, 0.72)		-	
WTC-non-MMTP vs. NYS-non-responders	0.93 (0.79, 1.10)		1	•
WTC-MMTP vs. WTC-non-MMTP	0.69 (0.57, 0.84)	20	•	
Cancer-specific mortality	18 - 11 - 185 -			38
WTC-MMTP vs. NYS-non-responders	0.72 (0.64, 0.82)			8
WTC-non-MMTP vs. NYS-non-responders	0.94 (0.78, 1.14)		11111 <u>1-</u>	
WTC-MMTP vs. WTC-non-MMTP	0.77 (0.61, 0.97)			-
		0.50	0.71	1.0

HR (95% CI)

Boffetta et al., 2021

2.5

OCCUPATIONAL EPIDEMIOLOGY RESEARCH

- Surveillance of exposed workers
- Etiological research
- Information on disease mechanisms

CONTRIBUTION OF OCCUPATIONAL EPIDEMIOLOGY TO MECHANISTIC RESEARCH

- Direct
 - molecular cancer epidemiology
- Indirect
 - interpretation of descriptive and analytical studies

EPIDEMIOLOGICAL STUDIES OF LHN IN WORKERS EXPOSED TO ETHYLENE OXIDE

Industry	N studies	N cases	RR	95%
Chemical	6	32	1.3	0.9-
Sterilization	3	41	1.1	0.8-

Dose-response in US cohort of sterilization workers RR for 45 ppm-yrs: 1.2 (95% CI 1.1-1.4)

- 6 CI
- 1.8
- 1.5

ETHYLENE OXIDE HB ADDUCTS

- N-2(hydroxyethyl) adducts at N-terminal of His and Val
- Studies of exposed workers from Netherlands, Sweden, US, **Mexico**
- Same adducts found in exposed rats and mice, with dose-response

AGENTS CLASSIFIED IN GROUP 1 IARC MONOGRAPHS VOLUMES 1-100

Type of evidence

Evidence from traditional epidemiology

Evidence from molecular epidemiology

Mechanistic evidence

Evidence from other relevant data

Total

* 9 biological agents

- Ν
- 85
- 11*
- 10
- 107

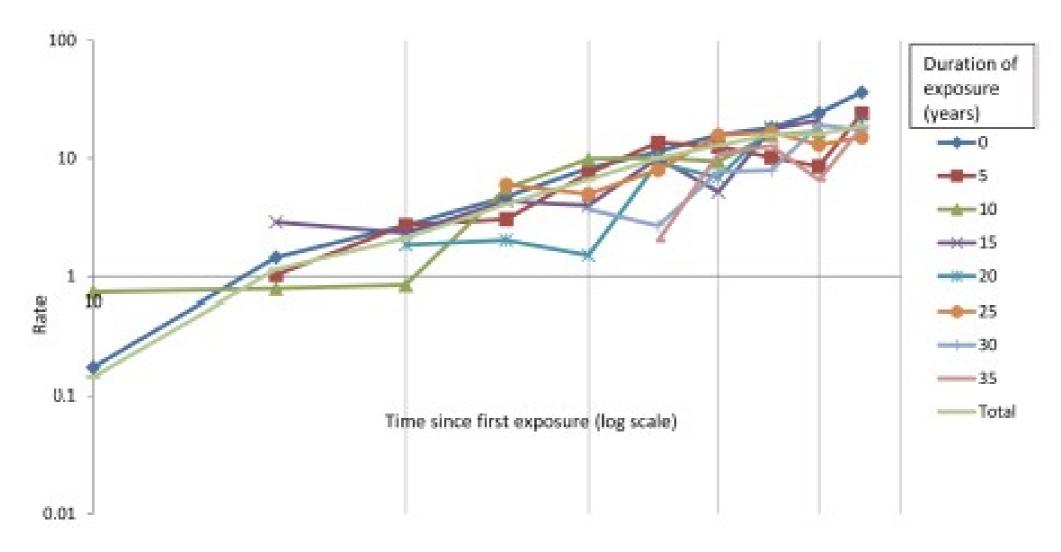
MECHANISTIC EVIDENCE CRITICAL TO HAZARD IDENTIFICATION

Agent	Mechanisms
Aristolochic acid	DNA adducts; TP53 mutations
NNN, NNK	DNA adducts
BaP	DNA, protein adducts; TP53, K-ras mutatio
Dyes metabolized to benzidine	Metabolism
Ethylene oxide	Protein adducts Genot
MOCA	DNA adducts; SCE, MN <
Etoposide	MLL translocations
PCB-126	AhR receptor
PCDBF	AhR receptor
Phenacetin	Genotoxicity; cell proliferation

ions

otoxicity

INDIRECT CONTRIBUTION OF EPIDEMIOLOGY



Analytical studies

- \circ tobacco smoking and lung cancer
- asbestos and mesothelioma
- hormones/nutrition and breast cancer
- Descriptive epidemiology
 - o general model of carcinogenesis
 - asbestos and mesothelioma

***** Stony Brook Medicine

EFFECT OF TIME SINCE FIRST EXPOSURE NO EFFECT OF DURATION OF EXPOSURE

Pleural mesothelioma rate by time since first exposure and duration of exposure Pooled analysis of 8 cohorts

- Strong association with time since first exposure
- No association with duration of exposure
- Limited/no effect of cessation of exposure
- Consistent with an effect on the early stages of carcinogenesis
- Role of biopersistence of fibers in the pleura

INTERPRETATION

- Occupational cancer in high-resource country is a success story in cancer control
- Efforts should be made to investigate and control occupational cancer in medium- and low-income countries
- Occupational cancer has implications for cancer research and control in general

CONCLUSIONS

ACKNOWLEDGEMENTS

- Enrico Pira, Turin •
- Carlo La Vecchia, Milan
- Charles Hall, Rachel Zeig-Owens, David Goldfarb, New York
- Ken Mundt, Amherst
- Giulia Collatuzzo, Bologna