Congresso PBM Bologna 2018

Venerdì 19 ottobre 2018 - Ospedale Maggiore

Venerdi 19 ottobre 2018 – Ospedale Maggiore

METABOLISMO DEL FERRO, PARAMETRI, ANEMIA E CARENZA DI FERRO

Serelina Coluzzi

UOC Immunoematologia e Medicina Trasfusionale Azienda Ospedaliero-Universitaria Policlinico Umberto I-Sapienza Università di Roma

Il ferro

Elemento essenziale per la vita

- trasporto di ossigeno
- sintesi del DNA
- generazione di ATP

Proliferazione cellulare
Respirazione mitocondriale
Sintesi Hb e Mioglobina
Coenzimi-Citocromi

Allo stesso tempo potenzialmente tossico

capacità di generare specie reattive dell'ossigeno-ROS-, coinvolte nello stress ossidativo e nei segnali di sopravvivenza e

Regolazione di **assorbimento** ed **utilizzo** (non esiste un processo fisiologico di eliminazione del ferro in eccesso)

Lysosomes

La fisiologia del ferro

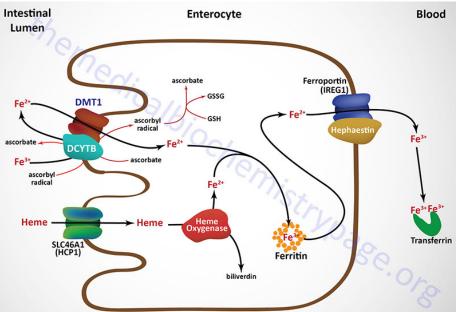
Assorbimento (duodeno-digiuno)

Fonte di ferro: alimentazione

la dieta di un soggetto adulto fornisce circa 10-20 mg di ferro al giorno, dei quali solo 1-2 mg vengono assorbiti L'assorbimento è influenzato da:

fattori locali

- ☐ che aumentano l'assorbimento:
- sostanze riducenti (vitamina C)
- aminoacidi
- glucidi e sorbitolo
- alcool
- ☐ che inibiscono l'assorbimento:
- fosfati, carbonati, ossalati
- chelanti

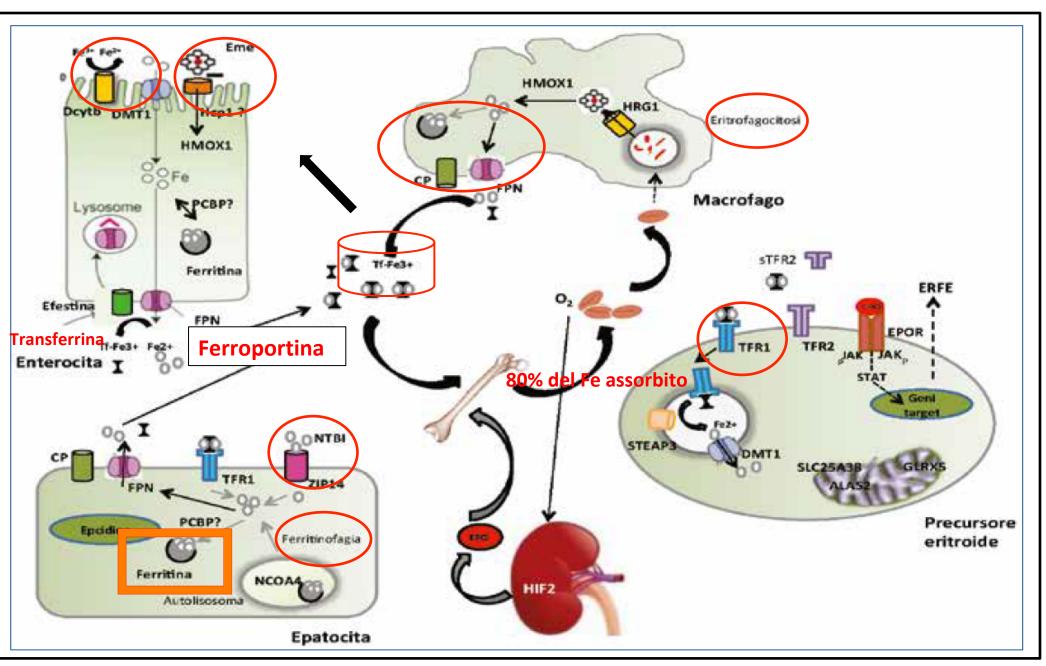

fattori generali

- entità dei depositi
- eritropoiesi

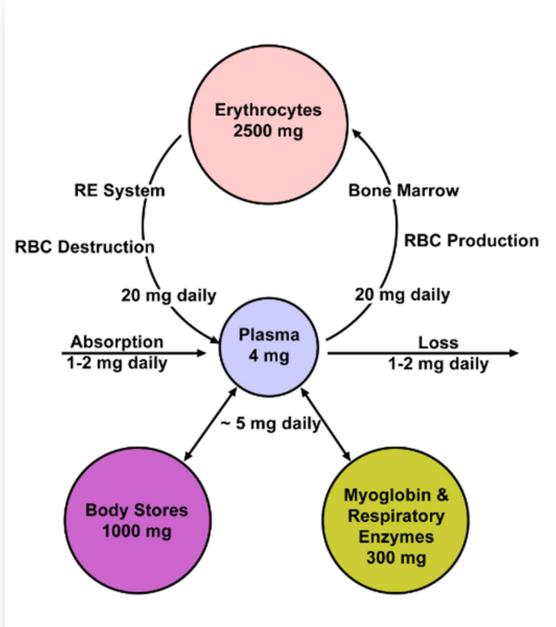
Il ferro della dieta

Ferro eme (emoglobina/mioglobina): nella carne, è ben assorbito (efficienza 5 volte maggiore rispetto al ferro inorganico)

Ferro non eme: in parte nella carne, nei vegetali; è assorbito con maggiori difficoltà. Presente nel lume intestinale come forma ferrica Fe+3, viene convertito nella forma ferrosa Fe+2 dalla ferro-reduttasi (DCYTB)

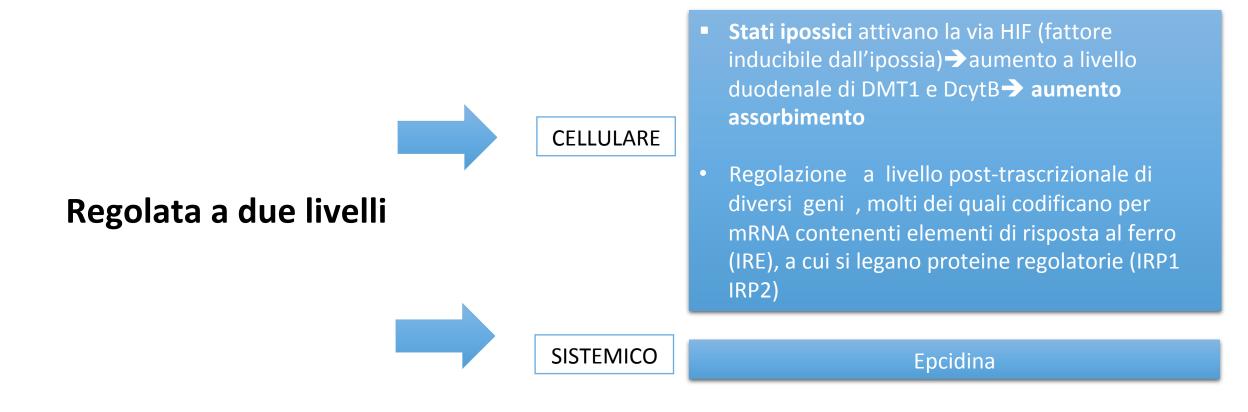


La distribuzione del ferro nell'organismo



^{*} prodotto della condensazione di molecole di ferritina, proteine, lipidi, acido sialico, porfirine

Il ciclo del ferro


La fisiologia del ferro

La fisiologia del ferro

Perdite fisiologiche di ferro									
Escrezione fecale, desquamazione epitelio intestinale	0,4 mg/die								
Sudorazione, desquamazione epitelio cutaneo	0,5-1 mg/die								
Escrezione urinaria	0,1 mg/die								
Flusso mestruale	20 mg /ciclo								
Gravidanza e parto	600 mg/gravidanza								
Allattamento	150 mg								

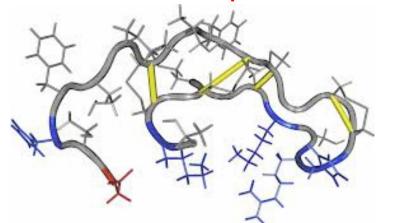
L'omeostasi del ferro

Regolazione del bilancio del ferro: il ruolo dell'epcidina

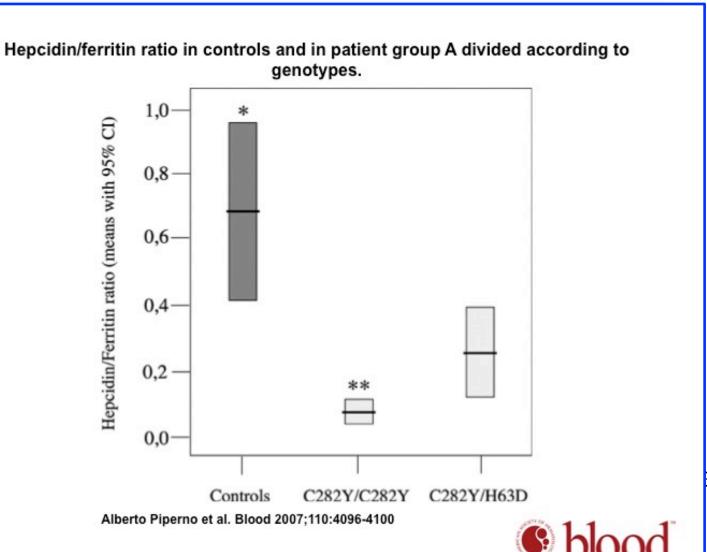
L'epcidina è un regolatore negativo dell'assorbimento del ferro degli alimenti e del rilascio del ferro dai macrofagi

La **funzione principale** dell'epcidina è quella di **down regolare la ferroportina** (FNP), legandosi ad essa e determinandone l'endocitosi e conseguente degradazione

In caso di eccesso di ferro



- -riduzione assorbimento intestinale di ferro
- -riduzione del rilascio di ferro da parte dei macrofagi epato-splenici


In caso di **ridotta disponibilità** di ferro

- -normale espressione della FNP
- -aumento assorbimento intestinale di ferro
- -normale riciclo del ferro (aumentata biodisponibilità)

Regolazione del bilancio del ferro: il ruolo dell'epcidina

Nei pazienti affetti da **emo**c marcata tale alterazione è più 3D.

©2007 by American Society of Hematology

Nat Genet. Author manuscript; available in PMC 2015 January 01.

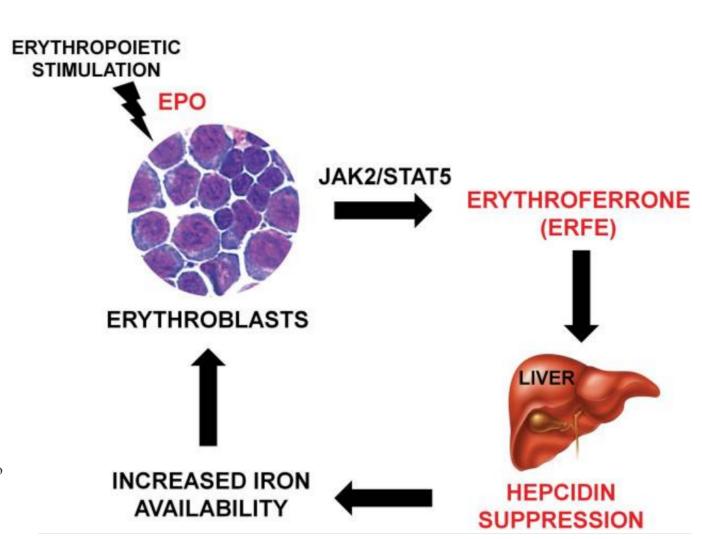
Published in final edited form as:

Nat Genet. 2014 July; 46(7): 678-684. doi:10.1038/ng.2996.

IDENTIFICATION OF ERYTHROFERRONE AS AN ERYTHROID REGULATOR OF IRON METABOLISM

Léon Kautz, PhD¹, Grace Jung, MS¹, Erika V. Valore, MS¹, Stefano Rivella, PhD^{3,4}, Elizabeta Nemeth, PhD¹, and Tomas Ganz, MD, PhD^{1,2}

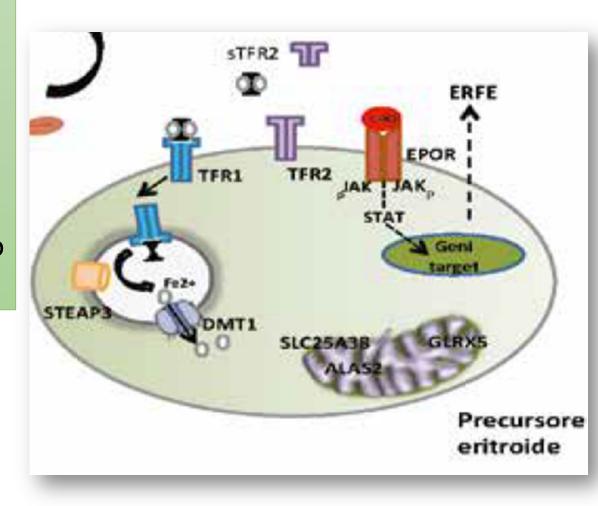
¹Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA


²Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA

³Department of Pediatrics, Division of Hematology-Oncology, Weill Cornell Medical College, New York, USA

⁴Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, USA

Figure 8. Proposed role of the erythroid factor erythroferrone (ERFE)


After erythropoietic stimulation, differentiating erythroblasts in the bone marrow and spleen rapidly increase ERFE production in an EPO-Stat5 dependent manner. ERFE is secreted into the circulation and acts directly on the liver to repress hepcidin. ERFE-mediated hepcidin suppression in turn increases iron availability for new red blood cells synthesis.

Regolazione del bilancio del ferro: TFR2

TFR2:

- interagisce con EPOR, favorendone la stabilizzazione sulla superficie cellulare, modulando pertanto la risposta di EPO e adattando l'eritropoiesi alla disponibilità di ferro
- coordina le richieste di ferro attraverso il rilascio di ERFE

Disordini del metabolismo del ferro

PATOLOGIE DEL METABOLISMO DEL FERRO:

LE CONDIZIONI DI CARENZA

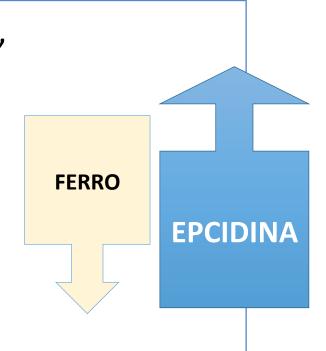
ΛI	V	F	Λ	Λ	14	1	C	T	П	Ν	Е	P	7	١	D	1	3	П	1	ſ	Λ	1
- 1	Α' Ι			14		- V		ш		′				и	ш		-	`П			7 -	

- Ereditaria
- Acquisita

Table 2.1 Haemoglobin thresholds used to define anaemia

Age or gender group	Haemoglobin threshold (g/l)
Children (0.50-4.99 yrs)	110
Children (5.00-11.99 yrs)	115
Children (12.00-14.99 yrs)	120
Non-pregnant women (≥15.00 yrs)	120
Pregnant women	110
Men (≥15.00 yrs)	130
-	WHO

- Malassorbimento
- Perdita cronica


DIFETTI GENETICI DI TRASPORTO e UTILIZZO

- Ipotransferrinemia
- Deficit di DMT1
- Anemie sideroblastiche congenite
 - -legata al sesso (mutazioni di ALAS2)
 - -legata al sesso con atassia (mutazioni di ABCB7)
 - -recessiva (mutazioni di SLC25A38 o di GLRX5)

DIFETTI DEL RICICLO

IRIDA (Iron Refractory Iron Deficiency Anemia)

- ♦ Disordine autosomico recessivo (mutazioni di TMPRSS6), geneticamente e fenotipicamente eterogeneo
- ♦Anemia microcitica ad insorgenza in età pediatrica
- ♦ Refrattarietà alla somministrazione orale di ferro
- ♦Risposta lenta al trattamento con ferro e.v.
- ♦ Bassi livelli di saturazione della transferrina
- **♦Livelli di epcidina normali o spesso elevati**

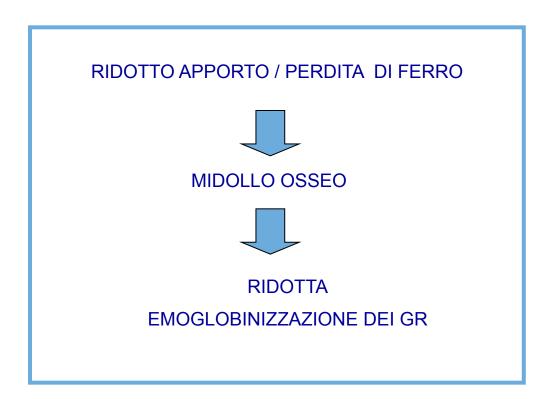
INSORGENZA DI CARENZA MARZIALE

TERAPIA

Sideropenia pre-latente

Sideropenia latente

Anemia sideropenica


- Bilancio marziale: negativo
- Depositi midollari: ridotti
- Ferritina: ridotta
- Saturazione della transferrina, MCV, Hb: normali

- Bilancio marziale: negativo
- Depositi midollari: assenti
- · Ferritina: molto ridotta
- Saturazione della transferrina: ridotta
- MCV, Hb : normali

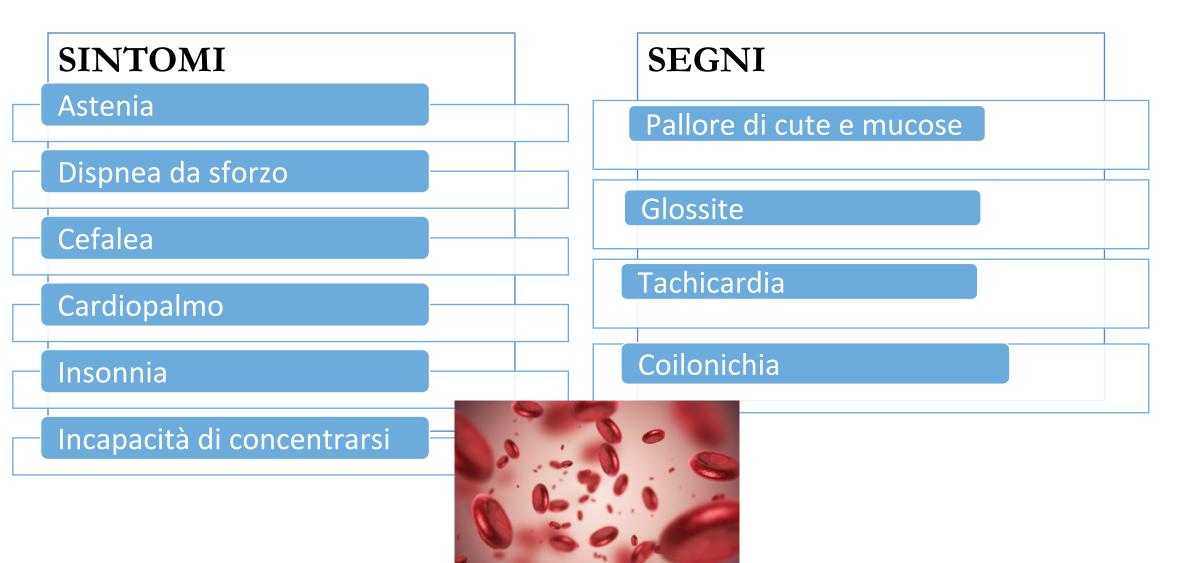
- Bilancio marziale: negativo
- Depositi midollari: assenti
- Ferritina: molto ridotta
- Saturazione della transferrina: ridotta
- MCV, Hb, MCH, MCHC: ridotti

ANEMIA DA CARENZA MARZIALE

(IDA: iron deficiency anemia)

- RIDUZIONE Hb
- MICROCITOSI
- IPOCROMIA
- IPOFERRITINEMIA
- RIDUZIONE SATURAZIONE TRANSFERRINA
- AUMENTO RECETTORE SOLUBILE TRANSFERRINA

E' la **forma di anemia più frequente al mondo**: i soggetti affetti da anemia sideropenica nel mondo, secondo stime del Global Disease Burden, sono **oltre un miliardo**

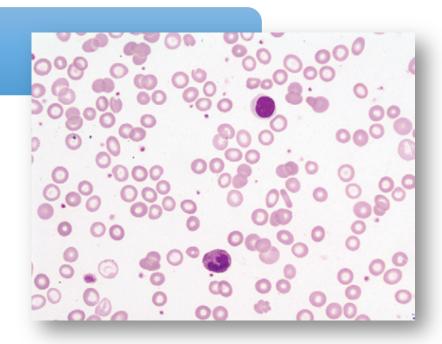

ANEMIA DA CARENZA MARZIALE: CAUSE

Cond

ווע Willebrand; sideropenia relativa in corso di trattamento con EPO

ANEMIA DA CARENZA MARZIALE

Marcatori biochimici di carenza marziale


Marcatore	Funzione	Stadio dell	a carenza
		Carenza marziale	Anemia sideropenica
SIDEREMIA	Quantità di ferro legato alla transferrina	< 80 μg/dL	< 30 μg/dL
TRANSFERRINA	Quantità di proteina legante il ferro (TIBC)	> 300 μg/dL	> 400 μg/dL
SATURAZIONE TRANSFERRINA	Rapporto Sideremia /Transferrina x 1,42 %	< 20%	< 10%
FERRITINA	Quantità ferro depositata	< 10 μg/L	< 10 μg/L (Beutler E., Waalen J.,2006)

Marcatori ematologici di carenza marziale

MORFOLOGIA DEL SANGUE PERIFERICO

INDICI ERITROCITARI (MCV, MCH, RDW)

INDICI RETICOLOCITARI

CARENZA MARZIALE: marcatori precoci

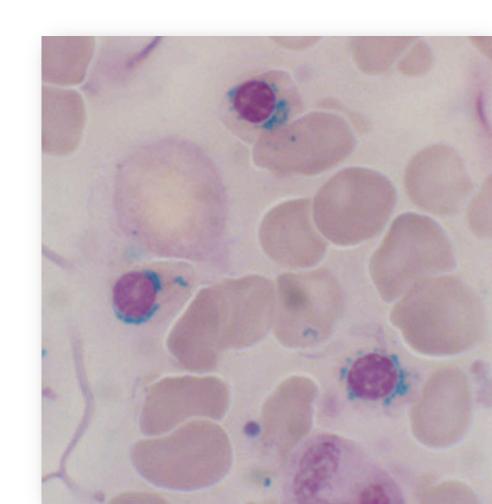
Indici precoci della necessità di instaurare terapia marziale nel paziente chirurgico:

- ◆% saturazione della transferrina <20%
- ◆CHr < 28 pg
- Ferritina < 100 μg/L entro le 24 h dall'intervento

DIFETTI GENETICI DI TRASPORTO e UTILIZZO del FERRO (1)

IPOTRANSFERRINEMIA

- Molto rara
- Grave carenza di ferro a livello del midollo
- NTBI (non-transferrin bound iron) si accumula nei parenchimi (sovraccarico ferro)
- Anemia ipocromica microcitica precoce e molto grave
- Epcidina molto ridotta
- Transferrina molto ridotta (< 20 mg/dL)
- % Saturazione della transferrina: > 100


DEFICIT di DMT1

- Trasmissione autosomica recessiva
- Anemia ipocromica microcitica presente già alla nascita
- Elevata % saturazione transferrina
- Ferritina aumentata
- Sovraccarico di ferro a livello epatico
- sTfR elevato

DIFETTI GENETICI DI TRASPORTO e UTILIZZO del FERRO (2)

ANEMIE SIDEROBLASTICHE CONGENITE

- Geneticamente eterogenee
- Accumulo di ferro a livello mitocondriale
- Sideroblasti ad anello >30% degli ERBL
- Anemia ipocromica microcitica

DIFETTI DEL RICICLO del FERRO

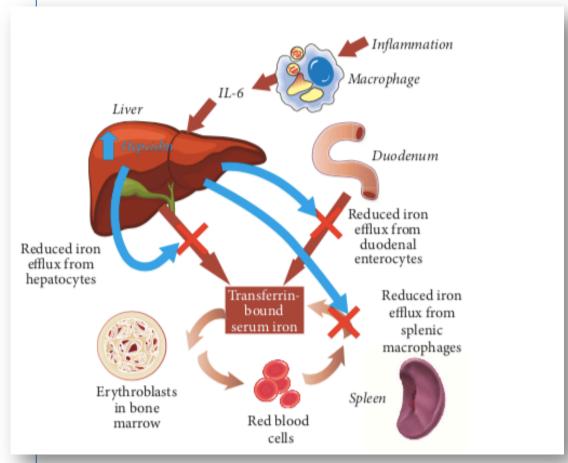
ACERULOPLASMINEMIA

- Geneticamente trasmessa (autosomica recessiva)
- Mutazioni della Cp
- Forma sindromica, in cui l'anemia, normocromica-normocitica, è in genere di lieve entità
- % Saturazione transferrina ridotta
- Ferritina elevata

DIFETTI DEL RICICLO del FERRO

ANEMIA DEI DISORDINI CRONICI O DELL'INI

- Forme molto eterogenee
- Molto comune in soggetti anziani ed ospedalizzati
- Anemia normocromica-normocitica di grado moderato (Hb 8-10 g/dL)
- Sideremia ridotta
- Ferritina normale/aumentata
- Livelli di sTfR normali (utile per differenziare la carenza di ferro dall'anemia dell'infiammazione cronica)


- Infezioni croniche
- Patologie autoimmuni (> reumatologiche)
- Neoplasie
- L. Hodgkin
- Insufficienza renale cronica
- Malattie infiammatorie croniche intestinali

DIFETTI DEL RICICLO del FERRO

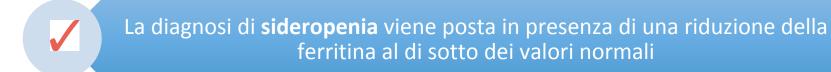
ANEMIA DEI DISORDINI CRONICI O DELL'INFIAMMAZIONE

Patogenesi multifattoriale:

- ridotta increzione di EPO
- soppressione parziale dell'eritropoiesi per effetto di IL-1 β e TNF- α
- sequestro macrofagico del ferro per eccessiva produzione di epcidina (attivata da IL-6)

Anemia dei disordini cronici o dell'infiammazione

Table 2: Proposed serum ferritin and TSAT thresholds for the diagnosis of iron deficiency in patients with or without inflammatory conditions.


Population	Thresholds					
No inflammatory condition [43]	Serum ferritin < 30 μ g/L (N.B.: false negatives are					
No finialimiator y condition [45]	common)					
	Serum ferritin $< 100 \mu\text{g/L}$ or TSAT $< 20\%$					
Inflammatory conditions [4, 5]	If serum ferritin is $100-300 \mu g/L$, a TSAT test is					
	required to confirm iron deficiency					

TSAT, transferrin saturation.

Comportamento dei principali marcatori in diverse condizioni di anemia

Marcatore	Anemia da carenza di ferro (A)	Anemia dei disordini cronici (B)	A+B
SIDEREMIA	•	•	•
TRANSFERRINA	^	N / V	N / ↑
% SATURAZIONE TRANSFERRINA	Ψ	Ψ	Ψ
FERRITINA	V	N / ↑	N / ↑
sTfR	^	N	N / ↑
EPCIDINA	•	^	N/
MCV	•	N	Ψ
MCH	•	N	Ψ

METABOLISMO DEL FERRO, PARAMETRI, ANEMIA E CARENZA DI FERRO

La presenza di anemia associata a riduzione della ferritina consente di porre diagnosi di anemia sideropenica

Altri parametri di natura biochimica ed ematologica vengono utilizzati per un inquadramento dello stadio della carenza e delle possibili cause che lo determinano

Nel corso del tempo sono stati individuati **nuovi fattori** cl nel metabolismo del ferro

E' stato possibile caratterizzare le **basi molecolari** di molte dovute a difetti del metabolismo del ferro

L'aumento delle conoscenze consente di sviluppare **nuovi approcci terapeutici** mirati a modulare l'espressione dei fattori coinvolti.