

Prognostic Impact of Interval Breast Cancer Detection in pT1a NOMO HER2-positive Breast Cancers

Antonino Musolino U.O. Oncologia Medica Registro Tumori della Provincia di Parma Azienda Ospedaliero-Universitaria di Parma

La Sorveglianza Epidemiologica dello Screening dei Tumori della Mammella nella Regione Emilia-Romagna Bologna, 9 Marzo 2016

Epidemiology of Breast Cancer

•Breast cancer is the most frequently diagnosed malignant disease and the second leading cause of cancer deaths among women.

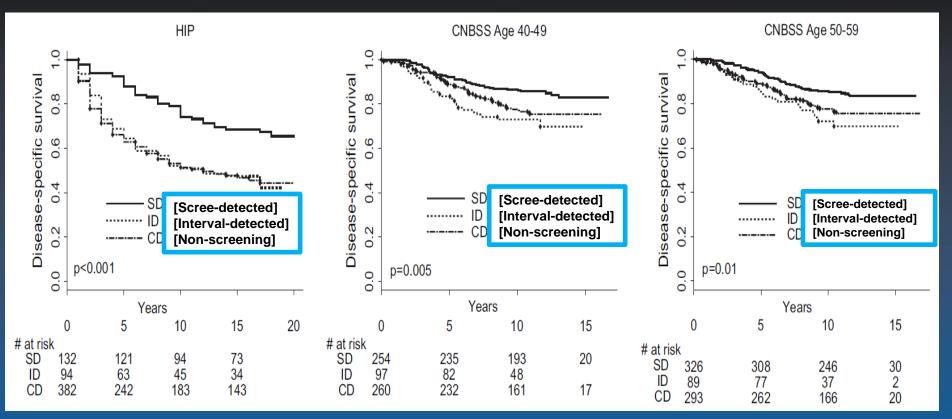
Incidence increases with age, and the probability of a women developing breast cancer is 1 in 69 in her 40s, 1 in 38 in her 50s, and 1 in 27 in her 60s.

 Incidence has stabilized in recent years and mortality has decreased since 1990 because of many factors, including screening.

Pooled Relative Risks for Breast Cancer Mortality from Mammography Screening Trials for All Ages

Age	Trials Included, <i>n</i>	RR for Breast Cancer Mortality (95% Crl)	NNI to Prevent 1 Breast Cancer Death (95% Crl)
39–49 v	8*	0.85 (0.75–0.96)	1904 (929–6378)
50–59 y	6†	0.86 (0.75–0.99)	1339 (322–7455)
60–69 y	2‡	0.68 (0.54–0.87)	377 (230–1050)
70–74 y	1§	1.12 (0.73–1.72)	Not available

CrI = credible interval; NNI = number needed to invite to screening; RR = relative risk.


* Health Insurance Plan of Greater New York (27), Canadian National Breast Screening Study-1 (28), Stockholm (26), Malmö (26), Swedish Two-County trial (2 trials) (26, 31), Gothenburg trial (30), and Age trial (29).
† Canadian National Breast Screening Study-1 (28), Stockholm (26), Malmö (26), Swedish Two-County trial (2 trials) (26, 31), and Gothenburg trial (30).
‡ Malmö (26) and Swedish Two-County trial (Östergötland) (26).
§ Swedish Two-County trial (Östergötland) (26).

Bias of Screening Mammography

• Stage shift (lead-time bias).

• Less aggressive tumors (length bias).

Disease-specific Survival Distribution by Method of Detection

Shen Y. J Natl Cancer Inst 2005

•Approximately 10-20% of breast cancers are not routinely detected by mammography.

•Women who have interval cancers have tumors at a more advanced stage at diagnosis and have poorer survival than women with cancers detected by mammography.

•The high frequency and poorer outcomes of interval cancer may have a substantial effect on screening-related mortality reduction.

Holmberg LH, Lancet 1986 Porter PL, J Natl Cancer Inst 1999

Factors Contributing to Screening Mammography Failure

•Technical or interpretive errors.

•Mammographic characteristics of the breast or tumor.

•Rapidly growing cancers.

Porter PL, J Nal Cancer inst 1999 Gilliland FD, J Natl Cancer Inst 2000

Significant Differences Between Interval- and Screen-Detected Cancers

Author (year)	Number of screen-detected cancers	Number of Interval cancers	Age groups	Screening interval (years)	«True» interval cancer?	Analysis (univariate/ multivariate)	Significant differences
DeGroote (1983)	99	21	30–80	1	Yes	Univariate	Nodal status
Heuser (1984)	32	28	—	1	No	Univariate	Mammography Age
Frisell (1987)	222	60	40–64	2	Yes	Univariate	Tumor size Nodal status
Hatschek (1989)	212	98	40–74	2	No	Univariate	S-phase fraction
Bahnsen (1994)	163	22	36–75	2	No	Univariate ^a	Nodal status
Burrell (1996)	267	82	50–64	Varying	Yes	Univariate	Tumor size Nodal status Tumor grade
Klemi (1997)	385	100	40–74	Varying	No	Univariate	Age Tumor size Nodal status
Raja (2001)	625	230	50–64	3	Yes	Univariate	Tumor size Nodal status Tumor grade
Shen (2005)	712	280	40–64	1	No	Multivariate ^b	Nodal status
Pálka (2008)	258	48	45-65	2	No	Univariate	Tumor stage Tumor grade

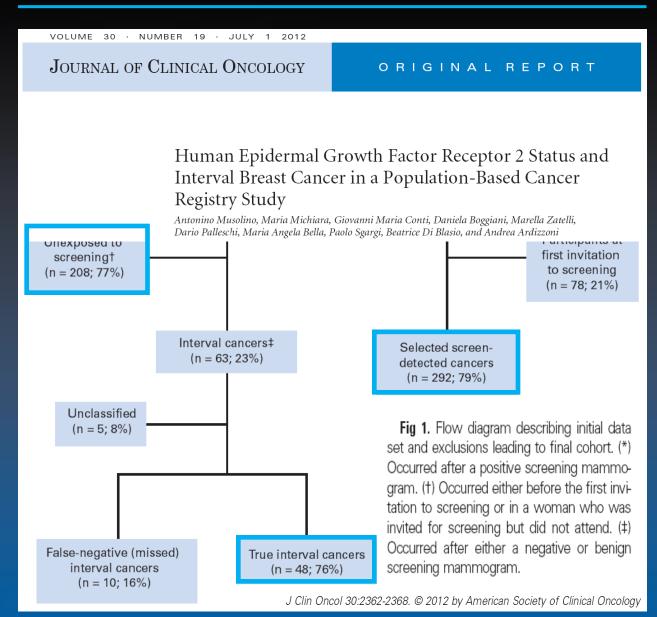
^aAdjusted for tumor size; ^bAdjusted for age and tumor size.

Significant Differences Between Interval- and Screen-Detected Cancers

Author (year)	Number of screen-detected Cancers	Number of Interval cancers	Age groups	Screening interval (years)	«True» interval cancer?	Analysis (univariate/ multivariate)	Significant differences
Crosier (1999)	84	51	50–64	3	Yes	Multivariate	ki-67 Her2/neu
Porter (1999)	279	150	40–80	Varying	No	Univariate ^a	Tumor grade ki-67 ER
Gilliland (2000)	64	63	40–80	Varying	No	Multivariate	P53 ki-67
Anttinen (2003)	79	39	> 50	Varying	No	Univariate ^a	Her2/neu
Collettt (2005)	95	95	50-74	2	No	Univariate	Basal-like
der Vegt (2010)	63	36	50–74	2	Yes	Univariate	ER
Domingo (2010)	115	34	50–69	2	Yes	Multivariate ^a	Breast density Triple negative
Kirsh (2011)	450	288	> 50	2	Yes	Univariate ^a	Mitotic score ER/PR
Mook (2011)	958	417	50–69	2	No	Univariate	ER
Chiarelli (2011)	995 ^b	362	50–69	2	No	Univariate ^a	Mitotic score
Musolino (2012)	292	48	50–69	2	Yes	Univariate ^a	ki-67/ER Her2/neu
Caldarella (2013)	211	66	50–69	2	No	Multivariate ^a	Triple negative
Pollan (2013)	870	240	45-69	2	Yes	Univariate ^a	Breast density Her2/neu Triple negative

^aAdjusted for age and tumor size; ^bRescreen-detected breast cancer.

Significant Differences Between Symptomatic and Screen-Detected Cancers


Author (year)	Number of screen-detected cancers	Number of symptomatic cancers	Age groups	Screening interval (years)	Analysis (univariate/ multivariate)	Significant Differences
Joensuu (2004)	443	1540	40-74	2	Univariate	Tumor stage/grade
Dong (2008)	2387	3094	40-74	Varying	Multivariate ^b	Ki-67 ER/PR Her2/neu
Pálka (2008)	258	263	45–65	2	Univariate	Tumor stage/grade
Sihto (2008)	247	989	30–80	2	Univariate	ER/PR Her2/neu
Burke (2008)	100	100	30–80	Varying	Univariate	Tumor size/grade ER/PR
Dawson (2009)	610	769	50–70	2	Univariate	Tumor stage/grade ER/PR/Ki-67
Mook (2011)	958	1217	50-69	2	Univariate ^b	Tumor size/grade ER/PR
Chiarelli (2011)	995°	491	50-69	2	Univariate ^b	Tumor grade Mitotic score
Brewster (2011)	247	603	50-87	Varying	Univariate	Luminal-A Triple negative Her2/neu
Kim (2012)	1025	2116	30–80	2	Univariate	Triple negative
Crispo (2013)	114	334	50-69	2	Univariate	Triple negative

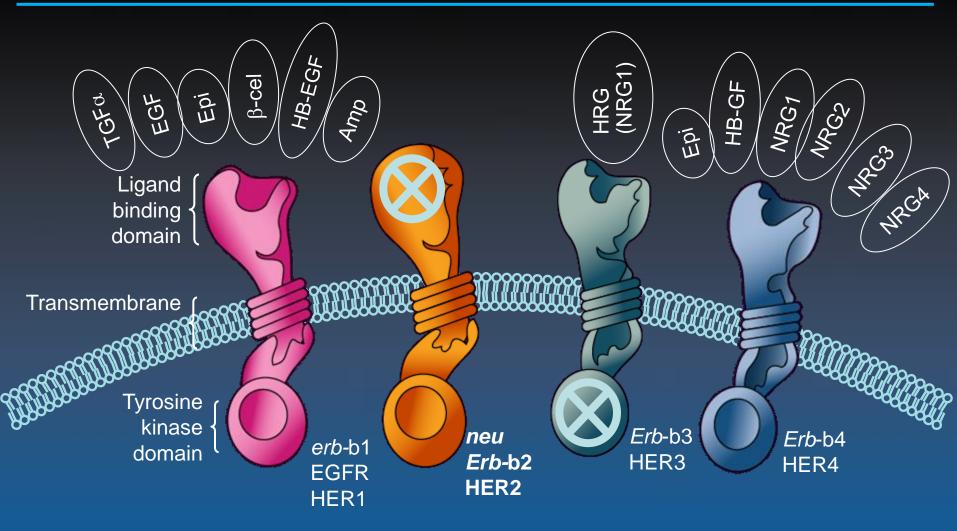
^aAdjusted for age and tumor size; ^bRescreen-detected breast cancer.

Association Between Method of Detection and Disease-free Survival After Adjusting for Clinical Variables

Factors adjusted for	HR (95% CI) for screen vs. symptom detected	Freedman statistic, %	Freedman statistic, <i>P</i>
None	0.65 (0.44–0.98)	_	-
Race	0.66 (0.43–0.99)	0	0.99
Histology	0.66 (0.44-0.99)	1.4	0.99
Tumor subtype	0.69 (0.45-1.08)	13.3	0.41
Ki67	0.69 (0.44-1.09)	11.9	0.55
Hormonal therapy	0.67 (0.45-1.01)	6.8	0.80
Nodal status	0.72 (0.48-1.09)	23.1	0.14
Chemotherapy	0.71 (0.46-1.09)	18.8	0.26
5 CNIs	0.72 (0.47-1.1)	22.1	0.16
Nuclear grade	0.71 (0.46-1.09)	17.4	0.35
Age at diagnosis	0.66 (0.44–0.98)	0.4	0.72
Tumor size	0.76 (0.49–1.19)	34.9	0.09
Tumor size + nodal status + age + grade + Ki67	0.75 (0.44–1.27)	31.7	0.11

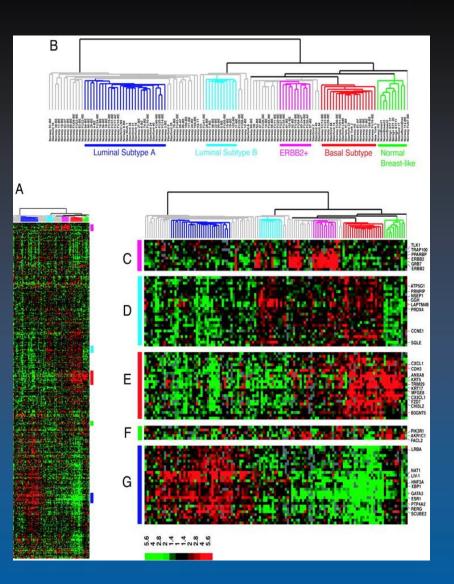
Study Population Selection

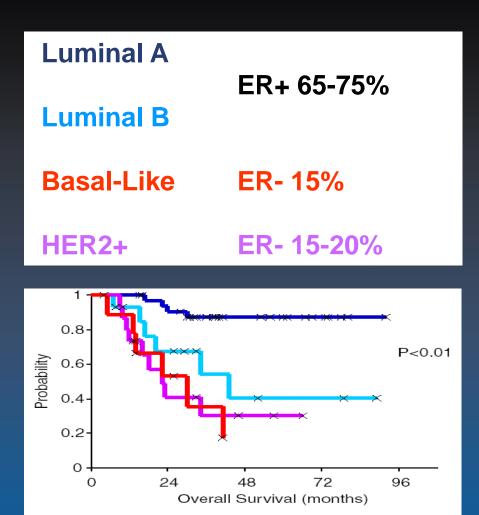
Age, Stage Distribution, and Clinical Characteristics by Mode of Breast Cancer Detection


	True Interval Can (n = 48)	cers	Screen-Detect Cancers (n = 2					Unexposed Ca (n = 208)	Unexposed Cases (n = 208)	
Characteristic	No. of Patients	0/_	No. of Patients	0/_	OP	05% CI	D	No. of Patients	0/_	
Age at screening, years										
50-54	12	25	29	10	1.0	Referent	< .001*	68	33	
55-59	13	27	62	21	0.5	0.2 to 0.9		62	30	
60-64	11	23	91	31	0.3	0.1 to 0.7		33	16	
65-69	12	25	110	38	0.2	0.1 to 0.6		45	21	
Tumor stage†‡										
I	24	52	207	71	1.0	Referent	< .001*	96	47	
II	12	26	64	22	1.5	0.7 to 3.3		73	35	
III-IV	10	22	21	7	4.8	1.9 to 10		38	18	
Tumor size, cm†‡										
≤ 1.0	18	40	149	51	1.0	Referent	< .001*	48	23	
> 1.0-2.0	14	30	99	34	1.2	0.6 to 2.4		85	41	
> 2.0	14	30	44	15	2.8	1.3 to 5.6		74	36	
Regional lymph nodests										
Negative	31	65	229	78	1.0	Referent	.57	155	75	
Positive	16	35	63	22	1.0	0.7 to 1.9		52	25	
Breast density†‡										
Low	26	58	164	62	1.0	Referent	.56	111	56	
High	19	42	99	38	1.2	0.6 to 2.4		82	43	
Menopausal status†										
Premenopausal	9	20	42	15	1.0	Referent	.35	45	24	
Postmenopausal	35	80	238	85	1.0	0.3 to 2.8		143	76	
Family history of breast cancer†										
None or second degree	38	83	209	78	1.0	Referent	.48	151	81	
First degree	8	17	59	22	0.8	0.3 to 1.9		36	19	

Musolino A. J Clin Oncol 2012

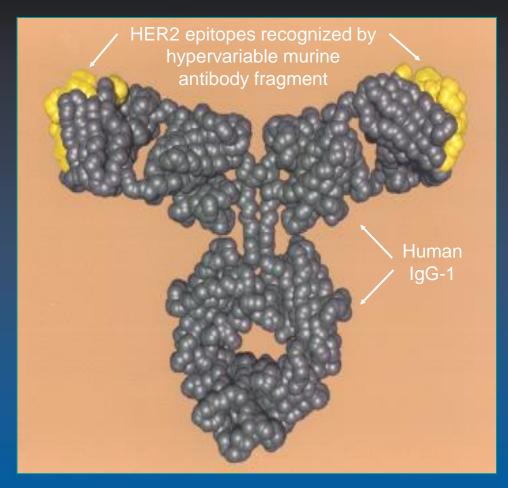
Tumor Characteristics of Interval-Detected and Screen-Detected Cancers


	True Interval Can (n = 48)	cers	Screen-Detect Cancers (n = 2					Unexposed Ca (n = 208)	ses
Characteristic	No. of Patients	%	No. of Patients	%	OR*	95% CI	Р	No. of Patients	%
Histologic subtype									
Ductal, not otherwise specified	36	75	204	70	1.0	Referent		157	75
Tubular	2	4	9	3	1.4	0.1 to 6.9	.65†	4	2
Mucinous	1	2	6	2	1.0	0.1 to 8.3	.12†	6	3
Medullary	1	2	7	2	0.6	0.1 to 5.2	.69†	4	2
Lobular	6	13	58	20	0.57	0.2 to 1.4	.15‡	27	13
Other§	2	4	8	3	1.4	0.4 to 10	.59†	10	5
Histologic grade									
G1	10	24	97	36	1.0	Referent	< .001¶	40	22
G2	15	36	112	41	1.1	0.4 to 2.5		78	44
G3	17	40	62	23	1.8	1.2 to 3.8		61	34
Ki-67 proliferative index									
Low	19	44	193	68	1.0	Referent	< .001‡	107	57
High	24	56	90	32	2.4	1.2 to 4.5		81	43
Estrogen receptor									
Positive	32	71	247	86	1.0	Referent	.01‡	155	79
Negative	13	29	40	14	1.6	1.1 to 3.1		42	21
Progesterone receptor									
Positive	27	60	202	70	1.0	Referent	.162‡	136	69
Negative	18	40	85	20	1 2	0 3 to 1 5		61	21
HER2 status∥									
Negative	25	56	240	86	1.0	Referent	< .001‡	163	86
Positive	20	44	39	14	3.4	1.7 to 7.1		27	14


The EGFR/HER Family

Mendelsohn and Baselga. *Oncogene*. 2000;19:6550. Olayioye et al. *EMBO J*. 2000;19:3159. Prigent and Lemoine. *Prog Growth Factor Res*. 1992;4:1. Harari and Yarden. *Oncogene*. 2000;19:6102. Earp et al. *Breast Cancer Res Treat*. 1995;35:115.

Breast Cancer Subtypes



Censored, Luminal A, Luminal B,
 Basal, ERBB2+

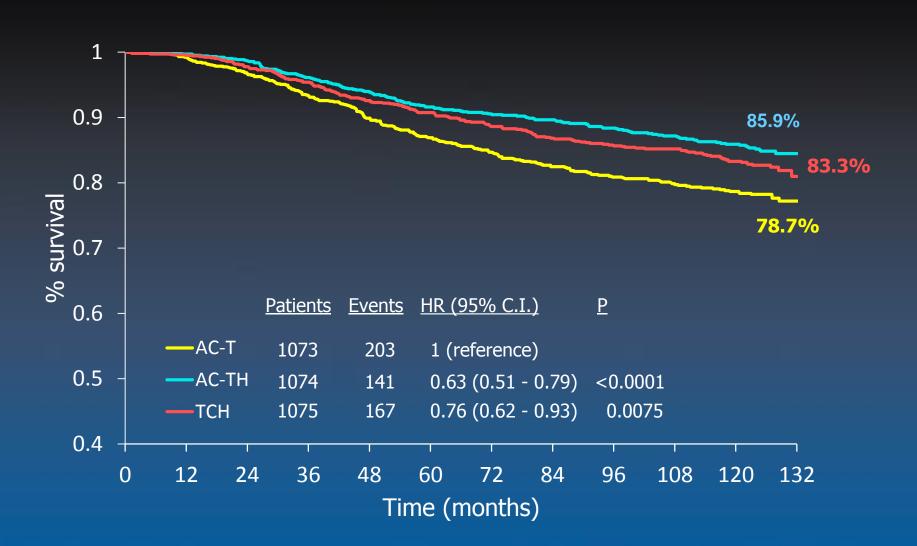
Perou et al. Nature 2000 Sorlie et al. PNAS 2001

Trastuzumab: Humanized Anti-HER2 Antibody

- Targets HER2 protein
 High affinity (K_d = 0.1 nM) and specificity
- •95% human, 5% murine
 - Decreases potential for immunogenicity
 - Increases potential for recruiting immune effector mechanisms

BCIRG 006 Phase III Trial Comparing AC->T with AC->TH and with TCH in the Adjuvant Treatment of HER2-Amplified Early Breast Cancer Patients:

10-year Follow-up analysis


Slamon D, Eiermann W, Robert N, Giermerk J, Martin M, Jasiowka M, Mackey J, Chan A, Liu M, Pinter T, Valero V, Falkson C, Fornander T, Shiftan T, Bensfia S, Hitier S, Xu N, Bee-Munteanu V, Drevot P, Press M, Crown J, on behalf of the BCIRG 006 Investigators.

Study sponsored by sanofi Support from Genentech

BCIRG 006 Trial Design

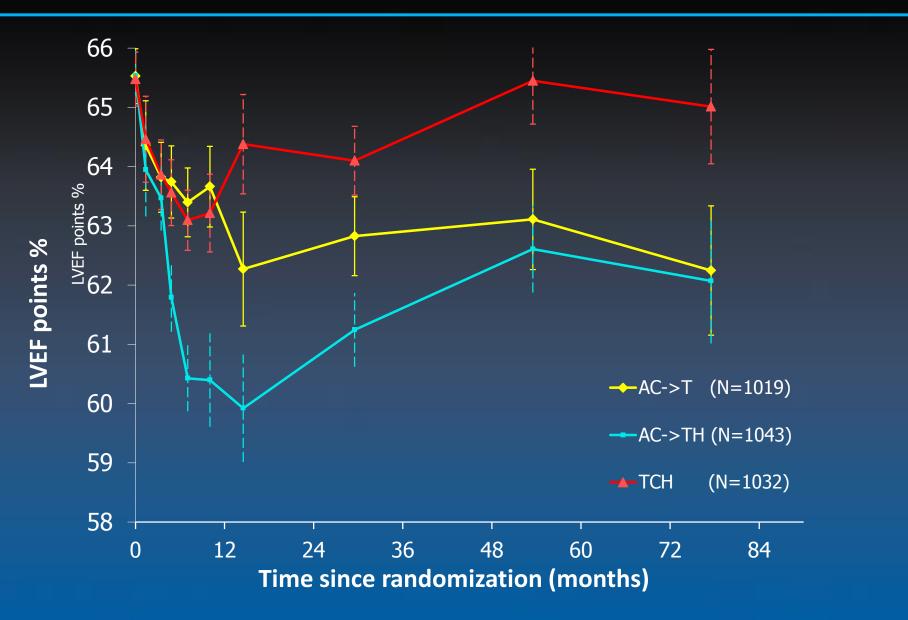
4 x Docetaxel 4 x AC 100 mg/m² 60/600 mg/m² AC→T Her 2+ (Central FISH) 4 x AC 4 x Docetaxel N+ 60/600 mg/m² 100 mg/m² or high AC→TH risk N-**1 Year Trastuzumab** 6 x Docetaxel and Carboplatin 75 mg/m² AUC 6 N=3,222 **TCH Stratified by Nodes** and Hormonal **Receptor Status 1 Year Trastuzumab**

BCIRG 006 Overall Survival (10.3 yrs)

BCIRG 006 Grade 3/4 Non-Hematological Toxicity

	AC→T n=1,050	AC→TH n=1,068	TCH n=1,056
	%	%	%
Arthralgia	3.2	3.3	1.4*
Myalgia	5.2	5.1	1.8*
Fatigue	7.0	7.2	7.2
Hand-foot syndrome	1.9	1.4	0.0*
Stomatitis	3.5	2.9	1.4*
Diarrhea	3.0	5.6	5.4
Nausea	5.9	5.7	4.8
Vomiting	6.2	6.7	3.5*
Irregular menses	27.3	24.5	26.7

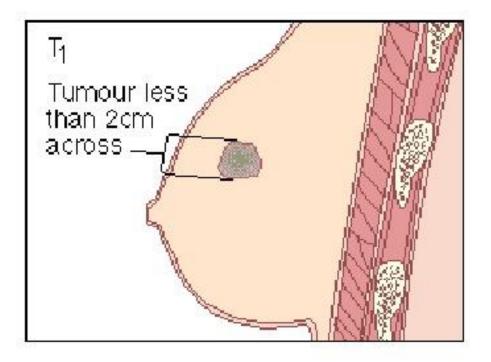
This presentation is the intellectual property of the <u>Dr. D Slamon</u>. Contact at <u>insert your email address here</u> for permission to reprint and/or distribute San Antonio Breast Cancer Symposium, December 8-12, 2015


BCIRG 006 Specific non-hematological toxicity (all grades)

	AC→T	AC→TH	ТСН
	n=1,050	n=1,068	n=1,056
	%	%	%
Neuropathy-sensory	48.8	50.1	36.1*
Neuropathy-motor	5.2	6.4	4.3*
Nail changes	49.4	43.7	28.7*
Myalgia	53.0	55.4	38.9*
Renal failure	0.0	0.0	0.1
Creatinine Grade 3/4	0.6	0.3	0.1

BCIRG 006 Grade 3/4 Hematological Toxicity

	AC→T n=1,050	AC→TH n=1,068	TCH n=1,056
	%	%	%
Neutropenia	63.5	71.6	66.2*
Leucopenia	51.9	60.4	48.4*
Febrile neutropenia	9.3	11.0	9.6
Neutropenic infection	11.9	12.6	11.2
Anemia	2.3	3.0*	5.4
Thrombocytopenia	1.6	2.1*	6.1
Acute Leukemias	6 (0.6)	2 (0.1)	1 (0.1)

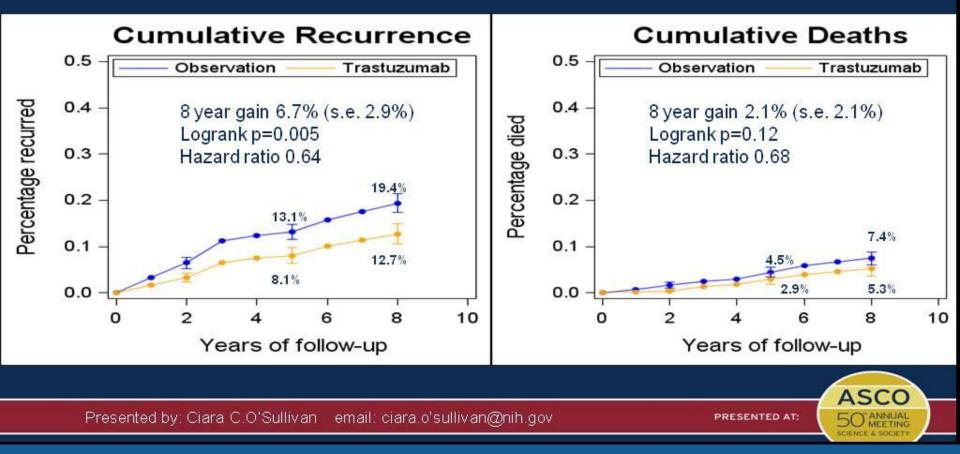

BCIRG-006 Mean LVEF - Final Analysis

T1 Stage

- T1mic: <0.1 cm
- T1a:>0.1- ≤ 0.5 cm
- T1b: >0.5- ≤ 1.0 cm
- T1c: >1.0- ≤ 2.0 cm

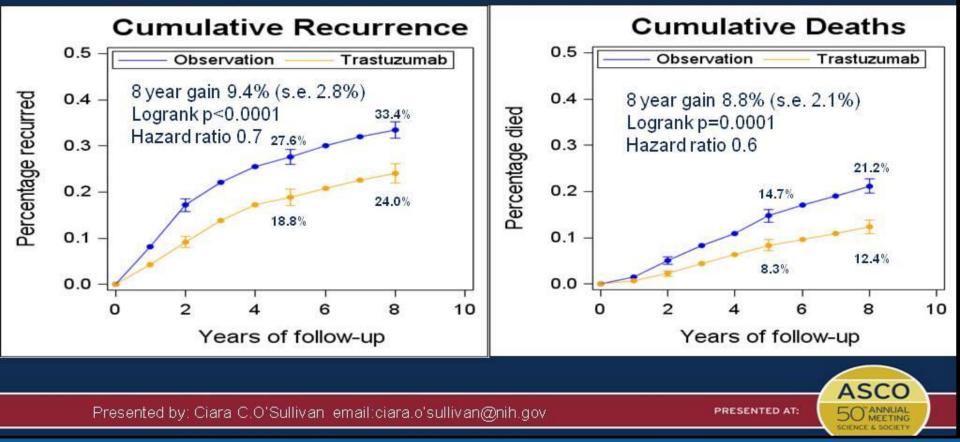
pT1a,b incidence in Italy: 1988-1990: 9.6% 2005-2007: 21.4% Ratio of pT1a/T1b: 1/5

Efficacy Of Adjuvant Trastuzumab Compared With No Trastuzumab for Patients With HER2-Positive Breast Cancer And Tumors ≤ 2cm: A Meta-analysis Of The Randomized Trastuzumab Trials


O'Sullivan CC, Bradbury I, de Azambuja E, Perez EA, Rastogi P, Spielmann M, Joensuu H, Ballman KV, Costantino JP, Delaloge S, Zardavas D, Piccart-Gebhart M, Zujewski JA, Holmes E, Gelber RD.

Long term follow up on behalf of the Trastuzumab Overview Group

PRESENTED AT THE 2014 ASCO ANNUAL MEETING. PRESENTED DATA IS THE PROPERTY OF THE AUTHOR.

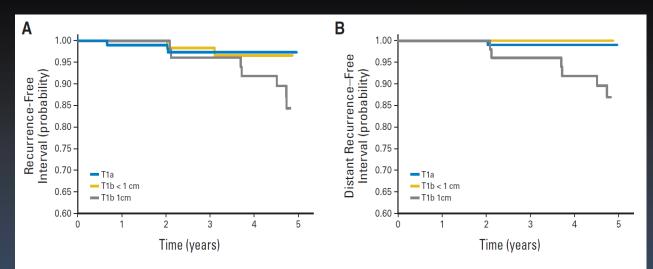

Presented By Ciara O'Sullivan at 2014 ASCO Annual Meeting

Cumulative Incidence of Recurrence or Death: HR-Positive Disease with Tumors ≤ 2cm and N 0/1

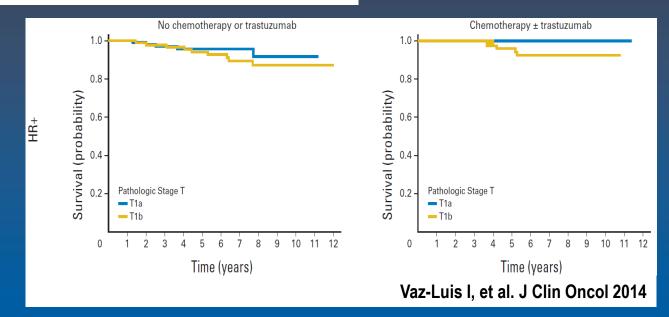
Presented By Ciara O'Sullivan at 2014 ASCO Annual Meeting

Cumulative Incidence of Recurrence or Death: HR-Negative Disease with Tumors ≤ 2cm

Presented By Ciara O'Sullivan at 2014 ASCO Annual Meeting


A more pressing question: Do patients with T1aN0 and T1bN0 disease warrant adjuvant tratuzumab?

- Only 75 T1aN0 and T1bN0 patients in this meta-analysis
- Risk : benefit ratio for this subset unknown



Presented By John Mackey at 2014 ASCO Annual Meeting

Outcome of pT1a,b HER2+ Breast cancers

Fehrenbacher L, et al. J Clin Oncol 2014

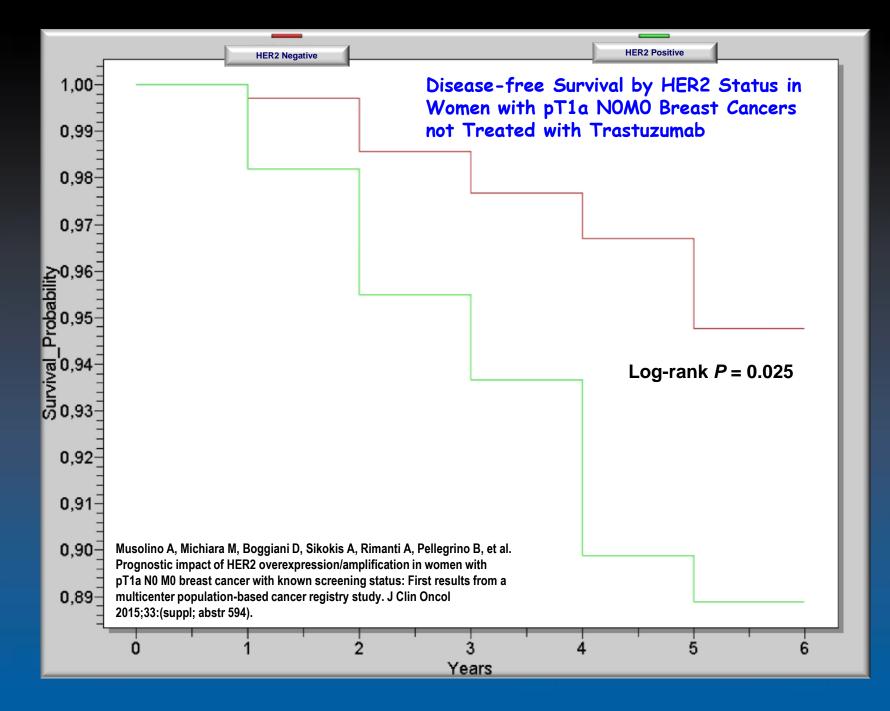
Time Trends in The Use of Adjuvant Chemotherapy and Outcomes in Women with T1a/bNO Breast Cancer in the National Comprehensive Cancer Network

	Percent of adjuvant CTX (± trastuzumab) (%)									
	HR+HE (T1a, b N=678	, c)	c) (T1a, b, c)		HR-HER2+ (T1a, b, c) N=364		HR-HER2- (T1a, b, c) N=1026			
X f	T1a N=984	T1b N=2246	T1a N=135	T1b N=199	T1a N=81	T1b N=105	T1a N=99	T1b N=264		
Year of diagnosis	P<0.00	01	P<0.00	01	P=0.0003		P=0.3600			
2003	3%	10%	13%	36%	50%	76%	18%	70%		
2005	1%	11%	25%	50%	38%	77%	31%	50%		
2009	2%	13%	47%	100%	56%	100%	50%	69%		
5 Yr BC survival										
CTX (95 %CI)	100%	98.8 % (95.4- 99.7)	100%	100%	100%	96.3% (88.8-98.8)	100%	97.9% (93.6-99.3)		
No CTX (95 %Cl)	99.9% (99.2-100)	99.4 % (98.9- 99.7)	98.5% (89.9-99.8)	97.7% (91.1- 99.4)	94.9 % (81-98.7)	100%	95.4% (86.4- 98.5)	(87.6-98.2)		

Vaz Duarte L, et al. J Clin Oncol 2014

Prognostic Impact of Interval Breast Cancer Detection in pT1a NO MO Early Breast Cancer with HER2-positive Status: A Multicenter Population-Based Prognostic Impact of Cancer Detection

- HER2+ cases: 15% (No adjuvant trastuzumab)
- Screen-detected cancers: 53%
- Interval cancers: 18%
- Nonscreening-related cancers: 29%


Primary Endpoints:

 Evidence of poorer disease-free survival (DFS) and overall survival (OS) in pT1a N0 M0, HER2-positive interval cancers in comparison with pT1a N0 M0, HER2-positive screen-detected cancers.

Secondary Endpoints:

St

 No differences in outcome (DFS and OS) between pT1a N0 M0, HER2-positive screen-detected cancers and pT1a N0 M0, HER2-negative screen-detected cancers.

- Interval cancers have been shown to be biologically more aggressive than their screen-detected counterparts.
- In a general population of pT1a N0M0 early BCs with known screening status, HER2-positive tumors account for a substantial proportion of screening failure and have a significant risk of relapse.
- Final analysis of this study will evaluate if interval cancer detection may identify patients with HER2-positive pT1a N0M0 tumors in whom the rate of recurrence justifies consideration for systemic, anti-HER2, adjuvant therapy.

SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA Azienda Ospedaliero - Universitaria di Parma

Cancer Treatment Reviews 43 (2016) 1-7

Anti-Tumour Treatment

Prognostic risk factors for treatment decision in pT1a,b NOM0 HER2-positive breast cancers

Antonino Musolino ^{a,*}, Daniela Boggiani ^a, Angelica Sikokis ^a, Anita Rimanti ^a, Benedetta Pellegrino ^a, Rosa Vattiato ^b, Paolo Sgargi ^a, Fabio Falcini ^b, Caterina Caminiti ^c, Maria Michiara ^a, Francesco Leonardi ^a

^a Medical Oncology Unit and Cancer Registry of Parma Province, University Hospital of Parma, Italy

^b Romagna Tumor Registry, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola, Italy

^c Research and Innovation Unit, University Hospital of Parma, Italy

Regione Emila-Romagna Breast Cancer Registry:

Fabio Falcini, M.D. Lauro Bucchi, M.D. Rosa Vattiato, Ph.D. Regione Emilia-Romagna Breast Cancer Screening Program:

Carlo Naldoni, M.D.

Back-up slides

Adjuvant Paclitaxel and Trastuzumab for Node-Negative HER2+ Breast Cancer

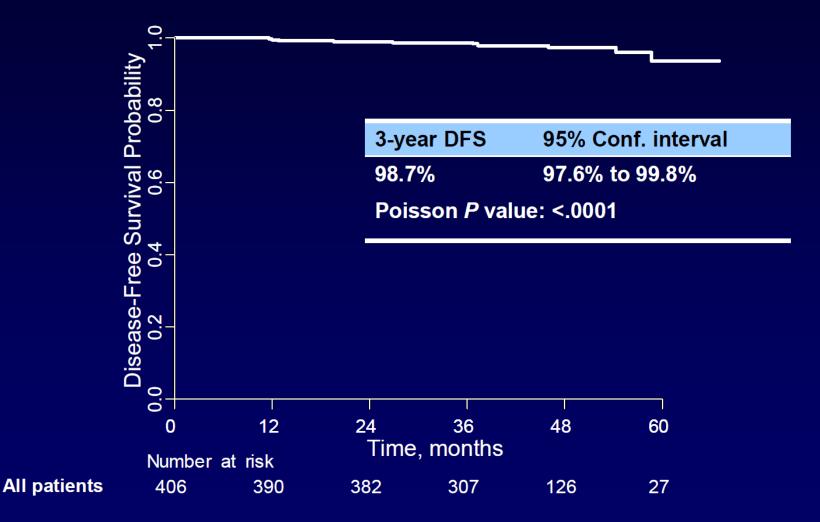
Abstract S1-04

Tolaney SM, Barry WT, Dang CT, Yardley DA, Moy B, Marcom PK, Albain KS, Rugo H, Ellis M, Shapira I, Wolff AC, Carey LA, Overmoyer BA, Partridge AH, Guo H, Hudis CA, Krop IE, Burstein HJ, Winer EP

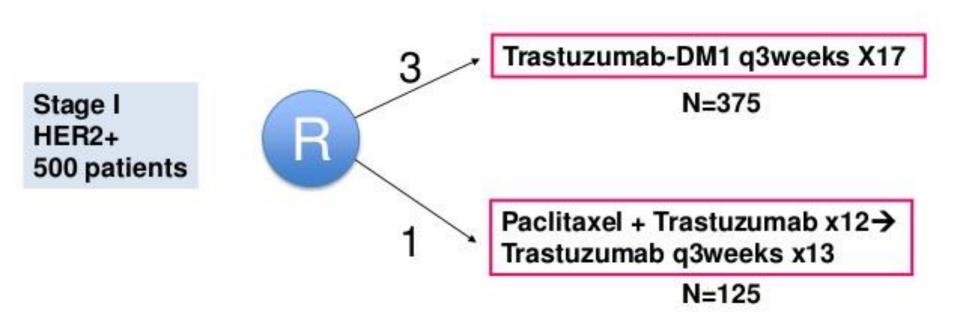
Study Design (APT Trial)

HER2+ ER+ or ERnode negative ≤3 cm

Planned N = 400

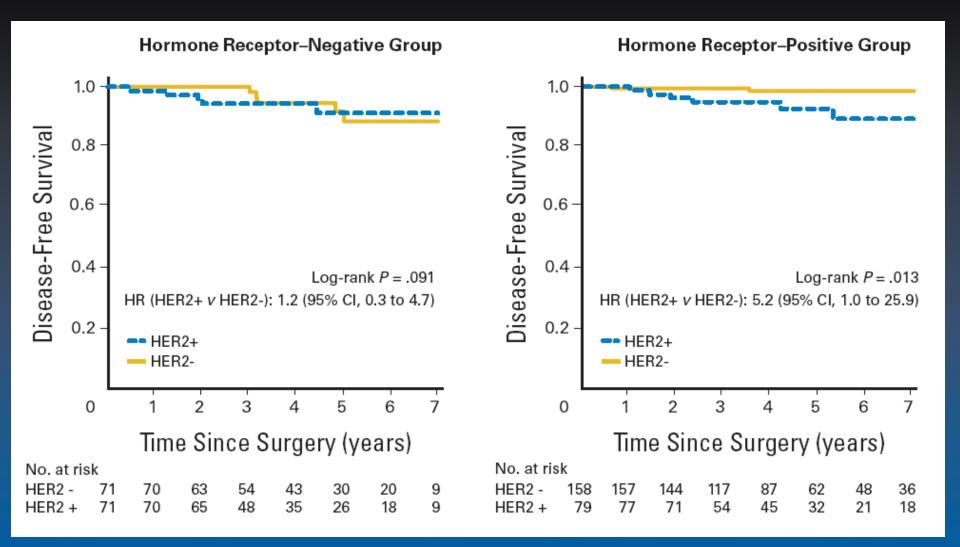

Enroll Ρ Ρ Ρ Ρ Ρ Ρ Ρ Ρ Ρ Ρ Ρ Ρ PACLITAXEL 80 mg/m² + TRASTUZUMAB 2 mg/kg x 12 Т ТТ Т ТТ Т Т Т FOLLOWED BY 13 EVERY 3 WEEK DOSES OF TRASTUZUMAB (6 mg/kg)*

*Dosing could alternatively be 2 mg/kg IV weekly for 40 weeks **Radiation and hormonal therapy was initiated after completion of paclitaxel

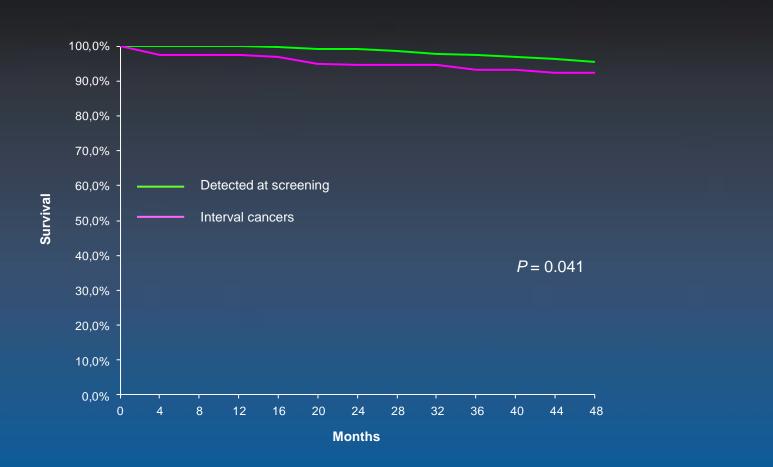

Patient Characteristics

	Ν	%
Age		
<50	132	33
50-70	233	57
≥70	41	10
Size of primary tumor		5
T1a ≤0.5 cm	77	19 _ _{50%}
T1b >0.5 to ≤1.0	124	31
T1c >1.0 to ≤2.0	169	42 50%
T2 >2.0 to ≤3.0	36	9 50%
<u>Histologic grade</u>		
I Well differentiated	44	11
II Moderately differentiated	131	32
III Poorly differentiated	228	56
HR status (ER and/or PR)		
Positive	272	67
Negative	134	33

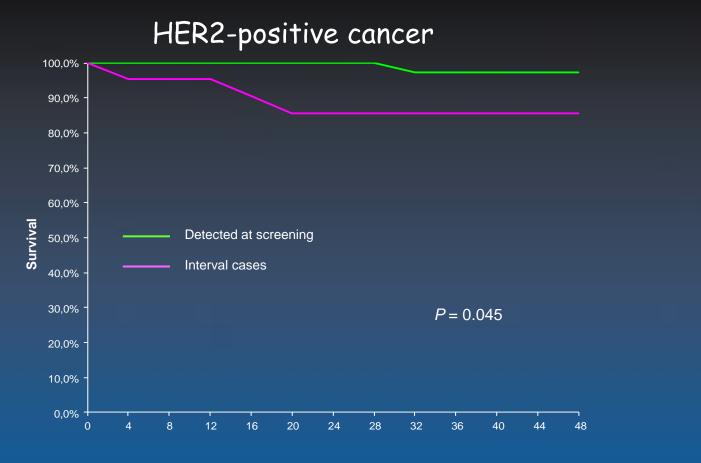
Disease-Free Survival



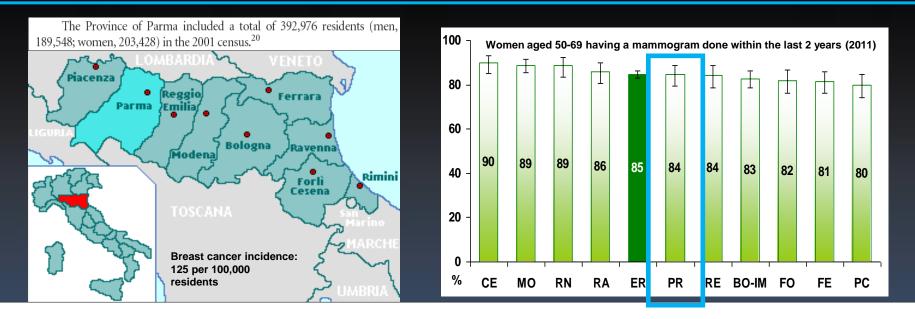
Will there be a role for TDM1 earlier in therapy? ATEMPT Trial


PI: Sara Tolaney, MD, MPH

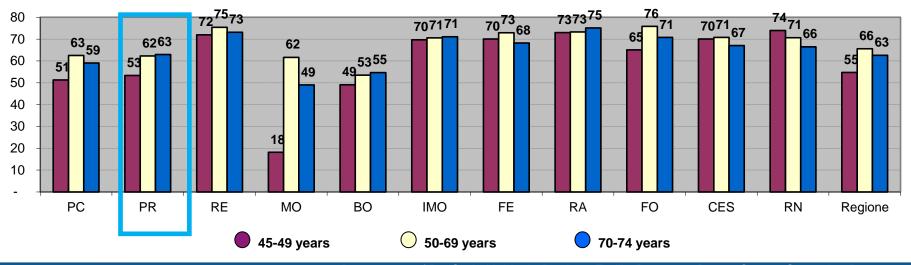
Disease-free survival in patients with pT1a-b NO MO Breast cancer by HER2 Status


Curigliano. J Clin Oncol 2009

Overall Survival by Mode of Breast Cancer Detection

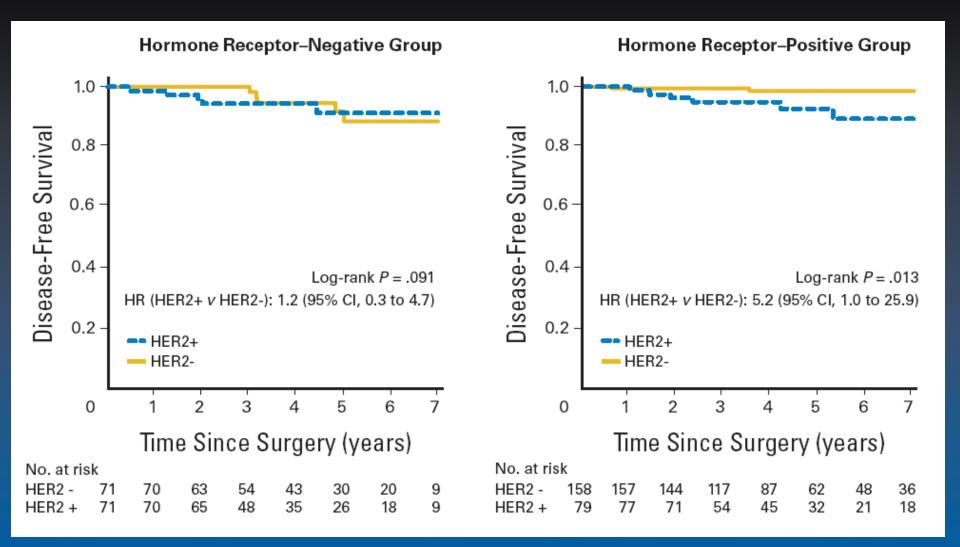

Musolino A. Unpublished data

Disease-free Survival by Mode of Breast Cancer Detection



Months

Parma Province Cancer Registry and Breast Cancer Screening Program



Attendance at screening mammography (2011)

By courtesy of Dr. Carlo Naldoni, Regione Emilia-Romagna Breast Cancer Screening Program

Disease-free survival in patients with pT1a-b NO MO Breast cancer by HER2 Status



Curigliano. J Clin Oncol 2009

Outcomes for T1a/bN0 HER2+ Tumors

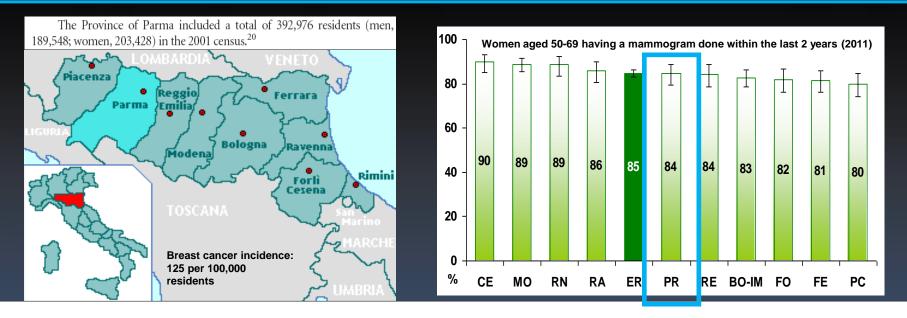
MD Anderson series

NCCN series

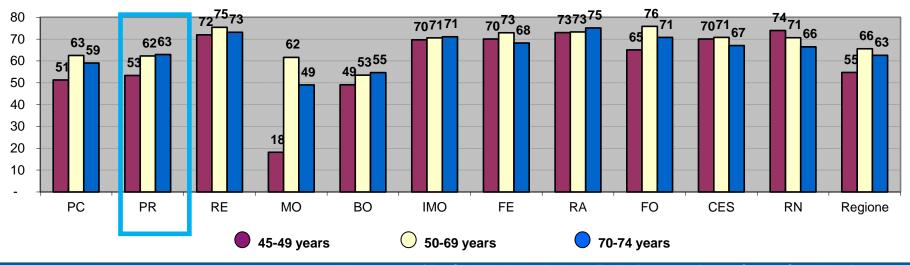
Gonzalez-Angulo AM, et al. J Clin Oncol. 2009;27(34):5700-5706. Vaz Duarte Luis IM, et al. J Clin Oncol. 2013;31(Suppl): Abstract 1006.

Significant Differences Between Interval- and Screen-Detected Cancers

Author (year)	Number of screen-detected cancers	Number of Interval cancers	Age groups	Screening interval (years)	«True» interval cancer?	Analysis (univariate/ multivariate)	Significant differences
DeGroote (1983)	99	21	30–80	1	Yes	Univariate	Nodal status
Heuser (1984)	32	28	—	1	No	Univariate	Mammography Age
Frisell (1987)	222	60	40–64	2	Yes	Univariate	Tumor size Nodal status
Hatschek (1989)	212	98	40–74	2	No	Univariate	S-phase fraction
Bahnsen (1994)	163	22	36–75	2	No	Univariate ^a	Nodal status
Burrell (1996)	267	82	50–64	Varying	Yes	Univariate	Tumor size Nodal status Tumor grade
Klemi (1997)	385	100	40–74	Varying	No	Univariate	Age Tumor size Nodal status
Raja (2001)	625	230	50–64	3	Yes	Univariate	Tumor size Nodal status Tumor grade
Shen (2005)	712	280	40–64	1	No	Multivariate ^b	Nodal status
Pálka (2008)	258	48	45-65	2	No	Univariate	Tumor stage Tumor grade


^aAdjusted for tumor size; ^bAdjusted for age and tumor size.

Significant Differences Between Interval- and Screen-Detected Cancers


Author (year)	Number of screen-detected Cancers	Number of Interval cancers	Age groups	Screening interval (years)	«True» interval cancer?	Analysis (univariate/ multivariate)	Significant differences
Crosier (1999)	84	51	50–64	3	Yes	Multivariate	ki-67 Her2/neu
Porter (1999)	279	150	40–80	Varying	No	Univariate ^a	Tumor grade ki-67 ER
Gilliland (2000)	64	63	40–80	Varying	No	Multivariate	P53 ki-67
Anttinen (2003)	79	39	> 50	Varying	No	Univariate ^a	Her2/neu
Collettt (2005)	95	95	50-74	2	No	Univariate	Basal-like
der Vegt (2010)	63	36	50–74	2	Yes	Univariate	ER
Domingo (2010)	115	34	50–69	2	Yes	Multivariate ^a	Breast density Triple negative
Kirsh (2011)	450	288	> 50	2	Yes	Univariate ^a	Mitotic score ER/PR
Mook (2011)	958	417	50–69	2	No	Univariate	ER
Chiarelli (2011)	995 ^b	362	50–69	2	No	Univariate ^a	Mitotic score
Musolino (2012)	292	48	50–69	2	Yes	Univariate ^a	ki-67/ER Her2/neu
Caldarella (2013)	211	66	50–69	2	No	Multivariate ^a	Triple negative
Pollan (2013)	870	240	45-69	2	Yes	Univariate ^a	Breast density Her2/neu Triple negative

^aAdjusted for age and tumor size; ^bRescreen-detected breast cancer.

Parma Province Cancer Registry and Breast Cancer Screening Program

Attendance at screening mammography (2011)

By courtesy of Dr. Carlo Naldoni, Regione Emilia-Romagna Breast Cancer Screening Program

Adjuvant Paclitaxel and Trastuzumab for Node-Negative HER2+ Breast Cancer

Abstract S1-04

Tolaney SM, Barry WT, Dang CT, Yardley DA, Moy B, Marcom PK, Albain KS, Rugo H, Ellis M, Shapira I, Wolff AC, Carey LA, Overmoyer BA, Partridge AH, Guo H, Hudis CA, Krop IE, Burstein HJ, Winer EP

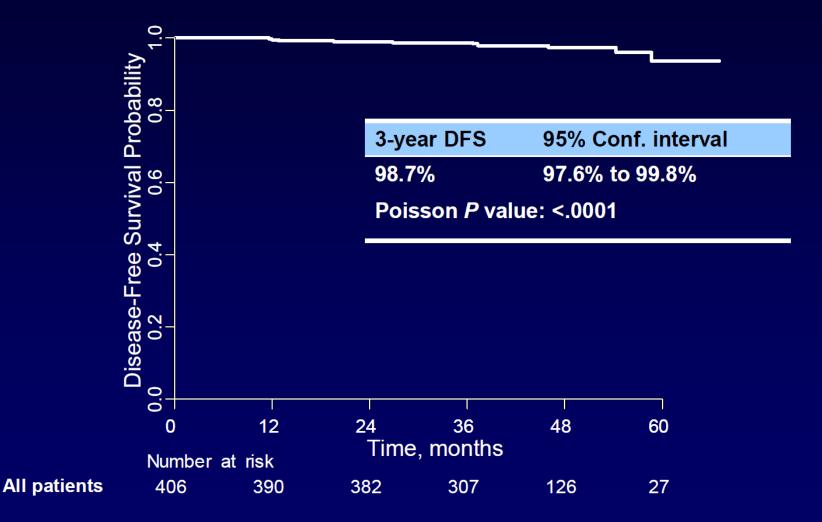
Study Design (APT Trial)

Enroll Ρ Ρ Ρ Ρ Ρ Ρ Ρ Ρ Ρ Ρ HER2+ ER+ or ERnode negative PACLITAXEL 80 mg/m² + TRASTUZUMAB 2 mg/kg x 12 **≤**3 cm Planned N = 400Т ТТ ТТТ T Т FOLLOWED BY 13 EVERY 3 WEEK DOSES OF TRASTUZUMAB (6 mg/kg)*

*Dosing could alternatively be 2 mg/kg IV weekly for 40 weeks **Radiation and hormonal therapy was initiated after completion of paclitaxel

Tolaney SM, et al. Cancer Res. 2013;73(24 Suppl): Abstract S1-04.

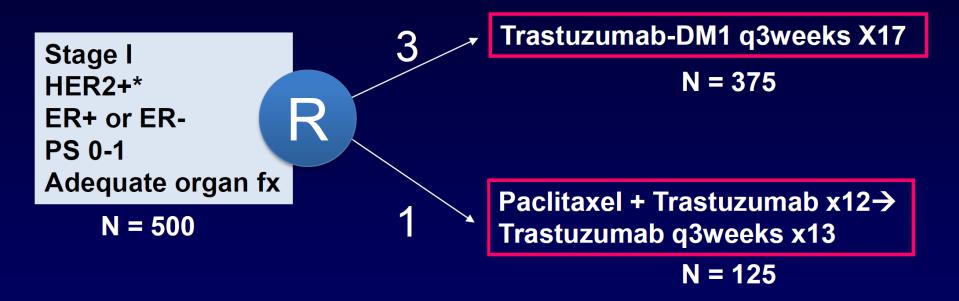
N Engl J Med 2015


Ρ

Ρ

Patient Characteristics

	Ν	%
<u>Age</u>		
<50	132	33
50-70	233	57
≥70	41	10
Size of primary tumor		7
T1a ≤0.5 cm	77	19 <mark>- 50%</mark>
T1b >0.5 to ≤1.0	124	31
T1c >1.0 to ≤2.0	169	42 50%
T2 >2.0 to ≤3.0	36	9 50%
<u>Histologic grade</u>		
I Well differentiated	44	11
II Moderately differentiated	131	32
III Poorly differentiated	228	56
HR status (ER and/or PR)		
Positive	272	67
Negative	134	33


Disease-Free Survival

Tolaney SM, et al. Cancer Res. 2013;73(24 Suppl): Abstract S1-04.

N Engl J Med 2015

ATEMPT Trial Schema

*HER2-positive defined as IHC 3+ or FISH≥2.0; will be confirmed by central HER2 testing prior to study enrollment Adjuvant endocrine therapy can be initiated after completion of 12 weeks of therapy. Adjuvant radiation therapy can be administered concurrently with study treatment.

PI: Sara Tolaney, MD, MPH

Cox Multivariate Analysis of Overall Survival

Covariate	Hazard Ratio	95% CI S.E.		Z-score	<i>P</i> -Value
Detection outside screening	2.4	1.4-5.9	0.6	1.2	0.04
Hormone receptor negative	3.5	1.2-10.1	0.5	2.3	0.02
HER2+	2.5	1.2-5.2	0.4	2.6	0.009
Advanced tumor stage	7.1	2.5-20.7	0.5	3.6	< 0.001

Conclusions

- Interval cancers have been shown to be biologically more aggressive than their screen-detected counterparts.
- Molecular subtype distribution of screen-detected breast cancer differs from that of interval cancers and may account, in part, for the better outcome of screen-detected cancer.
- Intervention studies aiming to optimize imaging technologies and screening intervals are warranted to improve the early detection of aggressive, fast-growing, breast cancer phenotypes.
- Screen detection has been found to be independently associated with better overall and breast cancer-specific survival, and the method of detection should be taken into account when estimating individual prognosis.